The kinetic energy of the tomato is :
K.E = 1/2 mv^2
K.E = 1/2 x 0.18 kg x 11 m/S^2
K.E = 0.99
Hope this helps
Nothing has been discovered to go faster than the speed of light. There have been some discoveries that had a speed very, very close to it (a bit under it), but none have passed it.
The centripetal acceleration = 236.63 m/s²
The force = 17.98 N
<h3>Further explanation</h3>
Given
mass = 76 g = 0.076 kg
r = 1.5 m
f = 2 rps = 2 rotation per second
Required
The centripetal acceleration
The Force tension
Solution
Centripetal force is a force acting on objects that move in a circle in the direction toward the center of the circle

F = centripetal force, N
m = mass, Kg
v = linear velocity, m / s
r = radius, m
The speed that is in the direction of the circle is called linear velocity
Can be formulated:

r = circle radius
f = rotation per second (RPS)
The linear velocity : 2 x 3.14 x 1.5 x 2 =18.84 m/s
The centripetal acceleration : ac = v²/R = 236.63 m/s²
The force : F = m x ac = 0.076 x 236.63 = 17.98 N
So, the acceleration of the bicycle is approximately <u>-1.67 m/s²</u> or it can be said to be decelerating approximately <u>1.67 m/s²</u>.
<h3>Introduction</h3>
Hi ! Here I will help material about linear motion changes regularly, which is where you will hear a lot of the term acceleration. Acceleration occurs when an object's speed increases in a certain time interval. Acceleration can be negative which is called deceleration. The relationship between acceleration with velocity and time is manifested in the equation:

With the following conditions :
- a = acceleration (m/s²)
= object's final velocity (m/s)
= object's initial velocity (m/s)- t = interval of the time (s)
<h3>Problem Solving </h3>
We know that :
= object's final velocity = 4 m/s
= object's initial velocity = 12 m/s- t = interval of the time = 4.8 s
What was asked :
- a = acceleration = ... m/s²
Step by step :




So, the acceleration of the bicycle is about -1.67 m/s² or it can be said to be decelerating around 1.67 m/s².