Answer:
try this
Explanation:
The energy of a falling object when it hits the ground is equaled to the energy it starts with because the potential energy is converted into kinetic energy entirely with the height at 0. This means the energy would be 200 J.
RESULT
If the sack weighs 210 newtons, then an upward force of 210 newtons
exactly cancels the downward force of gravity, and makes the net vertical
force on the bag zero.
ANY upward force that's greater than 210 newtons makes the net force
act upward on the bag, and causes it to accelerate upward.
With its apparent magnitude
Answer:
a) No difference
Explanation:
Since the billiard balls are identical , they have the same mass. Also they have the same speed
Since the angular momentum is conserved and the total energy is conserved ( if we assume elastic collision)
1/2 m1 * v i1² +1/2 m2 * v i1² = 1/2 m1 * v f1² +1/2 m2 * v f2²
where m= mass , vi= initial velocity , vf= final velocity
since m1=m2=m , vi1=vi2=vi
1/2 m1 * v i1² +1/2 m2 * v i1² = 1/2 m1 * v f1² +1/2 m2 * v f2²
m * v i² = 1/2 m (v f1² +v f2² )
vi² = 1/2(v f1² +v f2² )
since the 2 balls are indistinguishable from each other (they have identical initial mass and velocity) there is no reason for a preferential speed for one of the balls and therefore its velocities must be equal . Thus vf1=vf2=vf
therefore
v i² = 1/2(v f1² +v f2² ) = v i1² = 1/2* 2vf² = vf²
and thus
vi= vf
in conclusion, there is no difference in speed after the rebound
The answer to the given question is lightning.
Lightning is most probably the deadliest aspect of a thunderstorm. It is <span> a sudden </span>electrostatic discharge<span> during an </span>electrical storm. It happens <span> when there is an electrostatic discharge between </span>electrically charged<span> regions of a </span>cloud, which is referred as the i<span>ntra-cloud lightning or IC, between that cloud and another cloud or the CC lightning, or between a cloud and the ground (CG lightning).</span>