Answer:
Approximately
. (Assuming that
, and that the tabletop is level.)
Explanation:
Weight of the book:
.
If the tabletop is level, the normal force on the book will be equal (in magnitude) to weight of the book. Hence,
.
As a side note, the
and
on this book are not equal- these two forces are equal in size but point in the opposite directions.
When the book is moving, the friction
on it will be equal to
, the coefficient of kinetic friction, times
, the normal force that's acting on it.
That is:
.
Friction acts in the opposite direction of the object's motion. The friction here should act in the opposite direction of that
applied force. The net force on the book shall be:
.
Apply Newton's Second Law to find the acceleration of this book:
.
By Newton's second law, the net vertical force acting on the object is 0, so that
<em>n</em> - <em>w</em> = 0
where <em>n</em> = magnitude of the normal force of the surface pushing up on the object, and <em>w</em> = weight of the object. Hence <em>n</em> = <em>w</em> = <em>mg</em> = 196 N, where <em>m</em> = 20 kg and <em>g</em> = 9.80 m/s².
The force of static friction exerts up to 80 N on the object, since that's the minimum required force needed to get it moving, which means the coefficient of <u>static</u> friction <em>µ</em> is such that
80 N = <em>µ</em> (196 N) → <em>µ</em> = (80 N)/(196 N) ≈ 0.408
Moving at constant speed, there is a kinetic friction force of 40 N opposing the object's motion, so that the coefficient of <u>kinetic</u> friction <em>ν</em> is
40 N = <em>ν</em> (196 N) → <em>ν</em> = (40 N)/(196 N) ≈ 0.204
And so the closest answer is C.
(Note: <em>µ</em> and <em>ν</em> are the Greek letters mu and nu)
Answer:
The correct answer will be-
1. Dependent variable- The growth of plant in the form of height
2. Independent variable- different temperature
3. Constant variable- The amount of water, amount of sunlight, type of soil.
Explanation:
A Scientific experiment must include three types of variables which are: The independent, dependent and the constant variable.
1. Independent variable- The variable which can be modified or changed either on its own or manually. The variable directly influences the variable to be studied. In the given condition, the independent variable is the different temperature provided to the plants.
2. Dependent variable- The variable which is being studied in the experiment and directly influenced by the independent variable is the growth of the plant which is measured in the form of height.
3. Constant variable- The variable which is kept constant throughout the experiment and remains the same which could be the amount of water amount of sunlight and type of soil.
Answer:
Explanation:
Given
mass of sled =26 kg
coefficient of static friction 
coefficient of kinetic friction 
In order to move sled from rest we need to provide a force greater than static friction which is given by

After Moving Sled kinetic friction comes in to play which is less than static friction

therefore minimum force to keep moving sledge at constant velocity is 18.34 N
1) the weight of an object at Earth's surface is given by

, where m is the mass of the object and

is the gravitational acceleration at Earth's surface. The book in this problem has a mass of m=2.2 kg, therefore its weight is

2) On Mars, the value of the gravitational acceleration is different:

. The formula to calculate the weight of the object on Mars is still the same, but we have to use this value of g instead of the one on Earth:

3) The weight of the textbook on Venus is F=19.6 N. We already know its mass (m=2.2 kg), therefore by re-arranging the usual equation F=mg, we can find the value of the gravitational acceleration g on Venus:

4) The mass of the pair of running shoes is m=0.5 kg. Their weight is F=11.55 N, therefore we can find the value of the gravitational acceleration g on Jupiter by re-arranging the usual equation F=mg:

5) The weight of the pair of shoes of m=0.5 kg on Pluto is F=0.3 N. As in the previous step, we can calculate the strength of the gravity g on Pluto as

<span>6) On Earth, the gravity acceleration is </span>

<span>. The mass of the pair of shoes is m=0.5 kg, therefore their weight on Earth is
</span>

<span>
</span>