The answer is A. voice uses a wider range of pitch and volume as compared to speaking
Answer:

east of south
Explanation:
Given:
- distance of the person form the initial position,

- direction of the person from the initial position,
north of east
- distance supposed to travel form the initial position,

- direction supposed to travel from the initial position, due North
<u>Now refer the schematic for visualization of situation:</u>

...............(1)

.................(2)
<u>Now the direction of the desired position with respect to south:</u>


east of south
<u>Now the distance from the current position to the desired position:</u>



Answer:
c. You would weigh less on planet A because the distance between
you and the planet's center of gravity would be smaller.
Explanation:
The statement that best describes your weight on each planet is that you would weigh less on planet A because the distance between you and the planet's center of gravity would be smaller.
- This is based on Newton's law of universal gravitation which states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Since weight is dependent on the force of gravity and mass, the planet with more gravitational pull will have masses on them weighing more.
- Since the distance between the person and the center of the planet is smaller, therefore, the weight will be lesser.
Answer:
Approximate escape speed = 45.3 km/s
Explanation:
Escape speed

Here we have
Gravitational constant = G = 6.67 × 10⁻¹¹ m³ kg⁻¹ s⁻²
R = 1 AU = 1.496 × 10¹¹ m
M = 2.3 × 10³⁰ kg
Substituting

Approximate escape speed = 45.3 km/s