Answer:
t=0.016s
Explanation:
we can use

the time that the particle is in the magnetic field is one half oa period. Hence

I hope this is useful for you
regards
solution:
When an uncharged conducting object brought near to a charged insulating object there is a force on the conducting object to move the electrons within it to opposite sides of the conductor. That means there is a separation of charges in the conducting object in the presence of the charged insulating object near to it but the charge on the conducting object is neutral.
Thus, the conducting object is uncharged.
There is a force of attraction between the uncharged conducting object and the insulating object when it brought near to the insulating object.
Thus, there is a force on the conducting object.
The conductor remains uncharged and a force is exerted on it.
Answer:
Net force required to accelerate the car is 6000 N
Explanation:
Force is calculated by the equation, F = Mass × Acceleration
This is based on Newton's Second Law of Motion which states that the force acting on an object is its mass times the acceleration of the object.
Here, mass = 3000 kg and acceleration = 2 m/s²
⇒ Force = Mass × Acceleration
= 3000 × 2 = 6000 N
⇒ F = 6000 N
⇒ M = 3000 kg
⇒ a = 2 m/s²
Answer:
The allowed current in the cable is 1.15 A.
Explanation:
Given that,
Distance = 1.00 m
Suppose the magnetic field is
and if the experiment is to be accurate to 1.0 %
We need to calculate the current
Using formula of magnetic field


Put the value into the formula


If the experiment is to be accurate to 1.0%
Then,
We need to calculate the allowed current in the cable



Hence, The allowed current in the cable is 1.15 A.
Answer:
The amplitude of the eardrum's oscillation is 6.65×10^-13 m.
Explanation:
Given data:
The sound has a frequency of 262 Hz
The sound level is 84 dB
The air density is 1.21 kg/m^3
The speed of sound is 346 m/s
Solution:
As, Intensity of sound is given by,
I = Io×10^(s/10 db)
I = 2×π^2×ρ×v×f^2×Sm^2
Thus,
Sm = √(Io×10^(s/10 db)) / √( 2×π^2×ρ×v×f^2)
Now, put the values,
Sm = √( 10^-12 × 10^(84/10) ) / √( 2×(3.14)^2×1.21×346×(262)^2 )
Sm = √(2.51×10^-4 / 5.66×10^8)
Sm = √0.443×10^-12
Sm = 6.65×10^-13 m.