1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
chubhunter [2.5K]
3 years ago
12

Wave motion is characterized by two velocities: the velocity with which the wave moves in the medium (e.g., air or a string) and

the velocity of the medium (the air or the string itself). Consider a transverse wave traveling in a string. The mathematical form of the wave is y(x,t)=Asin(kx−ωt).
a)Find the velocity of propagation v_p of this wave.

Express the velocity of propagation in terms of some or all of the variables A, k, and omega.

b)Find the y velocity v_y(x,t) of a point on the string as a function of x and t.

Express the y velocity in terms of omega, A, k, x, and t.
Physics
1 answer:
Sindrei [870]3 years ago
3 0

Answer: a) v = ω /k, b) v = - ωAcos( kx −ωt)

Explanation:

y(x,t)=Asin(kx−ωt) defines the wave equation.

a)

We are asked to find wave speed (v)

Recall that v = fλ

From the wave equation above,

k = 2π/ λ where k is the wave number and λ is the wavelength, λ = 2π /k

ω = 2πf where f is the frequency and ω is the angular frequency.

f = ω/ 2π.

By substituting for λ and ω into the wave speed formulae, we have that

v =( ω/ 2π) × (2π /k)

v = ω/k

b)

y(x,t)=Asin(kx−ωt)

The first derivative of y with respect to x give the velocity (vy)

By using chain rule, we have that

v = dy/dt = A cos( kx −ωt) × (−ω)

v = - ωAcos( kx −ωt)

You might be interested in
An open-topped freight car with mass 24,000 kg is coasting without friction along a level track. It is raining very hard, and th
skelet666 [1.2K]

Answer:

(a) v = 3..6 m/s

(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.

Explanation:

from the question we have the following:

mass of the car (Mc) = 24,000 kg

initial velocity of the car (u) = 4 m/s

mass of water (Mw) = 3000 kg

final velocity of the car (v) = ?

(a) we can calculate the final momentum of the car by applying the conservation of momentum where

initial momentum = final momentum

Mc x U = (Mc + Mw) x V

24000 x 4 = (24000 + 3000) x v

96,000 = 27000v

v =3.6 m/s

(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.

7 0
3 years ago
Describe the main distinguishing features of spiral, elliptical, and irregular galaxies.
hram777 [196]

Answer:

Spiral galaxies consist of a flat, rotating disk of stars, gas and dust, and a central concentration of stars known as the bulge. These are surrounded by a much fainter halo of stars, many of which reside in globular clusters.

Elliptical galaxies have smooth, featureless light-profiles and range in shape from nearly spherical to highly flattened, and in size from hundreds of millions to over one trillion stars. In the outer regions, many stars are grouped into globular clusters. Most elliptical galaxies are composed of older, low-mass stars, with a sparse interstellar medium and minimal star formation activity They are often chaotic in appearance, with neither a nuclear bulge nor any trace of spiral arm structure. Collectively they are thought to make up about a quarter of all galaxies.

irregular galaxies were once spiral or elliptical galaxies but were deformed by gravitational action. they are shapeless.

5 0
3 years ago
Whenever two apollo astronauts were on the surface of the moon, a third astronaut orbited the moon. assume the orbit to be circu
almond37 [142]
Missing question:
"Determine (a) the astronaut’s orbital speed v and (b) the period of the orbit"

Solution

part a) The center of the orbit of the third astronaut is located at the center of the moon. This means that the radius of the orbit is the sum of the Moon's radius r0 and the altitude (h=430 km=4.3 \cdot 10^5 m) of the orbit:
r= r_0 + h=1.7 \cdot 10^6 m + 4.3 \cdot 10^5 m=2.13 \cdot 10^6 m
This is a circular motion, where the centripetal acceleration is equal to the gravitational acceleration g at this altitude. The problem says that at this altitude, g=1.08 m/s^2. So we can write
g=a_c= \frac{v^2}{r}
where a_c is the centripetal acceleration and v is the speed of the astronaut. Re-arranging it we can find v:
v= \sqrt{g r}= \sqrt{(1.08 m/s^2)(2.13 \cdot 10^6 m)}=1517 m/s = 1.52 km/s

part b) The orbit has a circumference of 2 \pi r, and the astronaut is covering it at a speed equal to v. Therefore, the period of the orbit is
T= \frac{2 \pi r}{v} = \frac{2\pi (2.13 \cdot 10^6 m)}{1517 m/s} =8818 s = 2.45 h
So, the period of the orbit is 2.45 hours.
6 0
3 years ago
What is a good concluding thought about what happens to your body if you drink a Coke
Vera_Pavlovna [14]
Your fluid intake is enhanced, you feel refreshed, you get a sugar high for a while, and a lot if the rust is removed from your stomach and small intestine.
7 0
3 years ago
If the volleyball hits the net and comes over to land on the other side it is?​
photoshop1234 [79]
Other teams point ......
8 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose the roller-coaster car in fig.6–41 passes point 1 with a speed of if the average force of friction is equal to 0.23 of i
    5·1 answer
  • What is the length of an aluminum rod at 65°C if its length at 15°C is 1.2 meters?
    13·2 answers
  • Peter throws a snowball at his car parked in the driveway. The snowball disintegrates as it hits the car. By Newton’s third law,
    10·2 answers
  • Which is the best example of translational motion?
    9·2 answers
  • During a baseball game, a batter hits a high
    12·2 answers
  • Please help on this one someone
    12·1 answer
  • 19.A 20 kg sign is pulled by a horizontal force such that the single rope (originally vertical) holding the sign makes an angle
    13·1 answer
  • A small spinning asteroid is in a circular orbit around a star, much like the earth's motion around our sun. The asteroid has a
    6·1 answer
  • Three cannons are located at the top of a cliff above a level plain. Cannon A is aimed at an angle of 25° above the horizontal a
    6·1 answer
  • A Go Kart (m = 35 kg) has a top speed of 12 m/s . A student traveling at top speed locks the brake to avoid hitting a bus after
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!