Answer:
(a) v = 3..6 m/s
(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.
Explanation:
from the question we have the following:
mass of the car (Mc) = 24,000 kg
initial velocity of the car (u) = 4 m/s
mass of water (Mw) = 3000 kg
final velocity of the car (v) = ?
(a) we can calculate the final momentum of the car by applying the conservation of momentum where
initial momentum = final momentum
Mc x U = (Mc + Mw) x V
24000 x 4 = (24000 + 3000) x v
96,000 = 27000v
v =3.6 m/s
(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.
Answer:
Spiral galaxies consist of a flat, rotating disk of stars, gas and dust, and a central concentration of stars known as the bulge. These are surrounded by a much fainter halo of stars, many of which reside in globular clusters.
Elliptical galaxies have smooth, featureless light-profiles and range in shape from nearly spherical to highly flattened, and in size from hundreds of millions to over one trillion stars. In the outer regions, many stars are grouped into globular clusters. Most elliptical galaxies are composed of older, low-mass stars, with a sparse interstellar medium and minimal star formation activity They are often chaotic in appearance, with neither a nuclear bulge nor any trace of spiral arm structure. Collectively they are thought to make up about a quarter of all galaxies.
irregular galaxies were once spiral or elliptical galaxies but were deformed by gravitational action. they are shapeless.
Missing question:
"Determine (a) the astronaut’s orbital speed v and (b) the period of the orbit"
Solution
part a) The center of the orbit of the third astronaut is located at the center of the moon. This means that the radius of the orbit is the sum of the Moon's radius r0 and the altitude (

) of the orbit:

This is a circular motion, where the centripetal acceleration is equal to the gravitational acceleration g at this altitude. The problem says that at this altitude,

. So we can write

where

is the centripetal acceleration and v is the speed of the astronaut. Re-arranging it we can find v:

part b) The orbit has a circumference of

, and the astronaut is covering it at a speed equal to v. Therefore, the period of the orbit is

So, the period of the orbit is 2.45 hours.
Your fluid intake is enhanced, you feel refreshed, you get a sugar high for a while, and a lot if the rust is removed from your stomach and small intestine.