Because the airplane flies at 800 km/h, it will fly 800 km in 1 hour. In order to find how far it travels in 2 hours, we multiply this number by 2. 800*2 = 1600, so the plane will travel 1600 km in 2 hours.
Answer:
Option B. magnitude of displacement of a sound pressure wave
Explanation:
Amplitude is simply the maximum displacement of a wave from its mean position.
Answer:
3) Ep = 13243.5[J]
4) v = 17.15 [m/s]
Explanation:
3) In order to solve this problem, we must use the principle of energy conservation. That is, the energy will be transformed from potential energy to kinetic energy. We can calculate the potential energy with the mass and height data, as shown below.
m = mass = 90 [kg]
h = elevation = 15 [m]
Potential energy is defined as the product of mass by gravity by height.
![E_{p}=m*g*h\\E_{p}=90*9.81*15\\E_{p}=13243.5[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%3D90%2A9.81%2A15%5C%5CE_%7Bp%7D%3D13243.5%5BJ%5D)
This energy will be transformed into kinetic energy.
Ek = 13243.5 [J]
4) The velocity can be determined by defining the kinetic energy, as shown below.
![E_{k}=\frac{1}{2} *m*v^{2} \\v = \sqrt{\frac{2*E_{k} }{m} }\\ v= \sqrt{\frac{2*13243.5 }{90} }\\v=17.15[m/s]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%20%5C%5Cv%20%3D%20%5Csqrt%7B%5Cfrac%7B2%2AE_%7Bk%7D%20%7D%7Bm%7D%20%7D%5C%5C%20v%3D%20%5Csqrt%7B%5Cfrac%7B2%2A13243.5%20%7D%7B90%7D%20%7D%5C%5Cv%3D17.15%5Bm%2Fs%5D)