Answer:
N = 648.55[N]
Explanation:
To solve this problem we must use Newton's second law which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F = m*a
where:
∑F = Forces applied [N]
m = mass = 73.2 [kg]
a = acceleration = 0.950 [m/s²]
Let's assume the direction of the upward forces as positive, just as if the movement of the box is upward the acceleration will be positive.
By performing a summation of forces on the vertical axis we obtain all the required forces and other magnitudes to be determined.

where:
g = gravity acceleration = 9.81 [m/s²]
N = normal force (or weight) measured by the scale = 83.4 [N]
Now replacing:
![-(73.2*9.81)+N=-73.2*0.950\\-718.092+N=-69.54\\N = -69.54+718.092\\N = 648.55[N]](https://tex.z-dn.net/?f=-%2873.2%2A9.81%29%2BN%3D-73.2%2A0.950%5C%5C-718.092%2BN%3D-69.54%5C%5CN%20%3D%20-69.54%2B718.092%5C%5CN%20%3D%20648.55%5BN%5D)
The acceleration has a negative sign, this means that the elevator is descending at that very moment.
The gravitational force between them is <em>1.25 x 10^20 Newtons.</em>
(I think you must have typed the mass of the moon wrong.
It must be 6.0 x 10^22 kg.)
Answer:
B.)Angular momentum is always conserved
Explanation:
Angular momentum is given by:

where
m is the mass of the object
v is its speed
r is the distance between the object and the centre of its circular trajectory
In absence of external torques, angular momentum is always conserved. That means that for the spinning star, if its radius r decreases (because it shrinks), in order for L (the angular momentum) to be conserved, the speed (v) must increases, therefore the spinning star speeds up.
So, the correct choice is
B.)Angular momentum is always conserved
200/1.5 = 133.33 seconds.
= approximately 2 mins and 13 secs.
Answer:
The observed wavelength on Earth from that hydrogen atom is
.
Explanation:
Given that,
The actual wavelength of the hydrogen atom, 
A hydrogen atom in a galaxy moving with a speed of, 
We need to find the observed wavelength on Earth from that hydrogen atom. The speed of galaxy is given by :

is the observed wavelength

So, the observed wavelength on Earth from that hydrogen atom is
. Hence, this is the required solution.