Answer:
This is how I figured it out:
- 215.5 rounded to one significant figure is 200
- 101.02555 rounded to one significant figure is 100.
- 200 + 100 = 300.
Hope this helps!
Explanation:
k = 
k = (6.626×10-¹⁹/590 × 10-⁹ )^{2} /2 × 1.673 × 10-²⁷
k = (1.12 × 10-³⁰)^2/3.346×10-²⁷
k = 1.25 × 10-⁶⁰ /3.346×10-²⁷
k = 0
ldk why, my answer is coming this :(
Answer:
I'm not completely sure, but I believe the first and third of the three are mechanical.
Explanation:
Chemical potential isn't moving or about to go into motion. It can't be mechanical.
In the experiment of free fall bob released a bag of mass 1 lb
so here we can say that initial speed of the bag is Zero
time taken by the bag to free fall is given as
t = 1.5 s
also the acceleration of free fall is given as
a = 9.8 m/s^2
now we will use kinematics equation here for finding the distance of free fall




so the bag will fall down by total distance of 11.025 m from its initial released position.
Answer:
block velocity v = 0.09186 = 9.18 10⁻² m/s and speed bollet v₀ = 11.5 m / s
Explanation:
We will solve this problem using the concepts of the moment, let's try a system formed by the two bodies, the bullet and the block; In this system all scaffolds during the crash are internal, consequently, the moment is preserved.
Let's write the moment in two moments before the crash and after the crash, let's call the mass of the bullet (m) and the mass of the Block (M)
Before the crash
p₀ = m v₀ + 0
After the crash
= (m + M) v
p₀ = 
m v₀ = (m + M) v (1)
Now let's lock after the two bodies are joined, in this case the mechanical energy is conserved, write it in two moments after the crash and when you have the maximum compression of the spring
Initial
Em₀ = K = ½ m v2
Final
E
= Ke = ½ k x2
Emo = E
½ m v² = ½ k x²
v² = k/m x²
Let's look for the spring constant (k), with Hook's law
F = -k x
k = -F / x
k = - 0.75 / -0.25
k = 3 N / m
Let's calculate the speed
v = √(k/m) x
v = √ (3/8.00) 0.15
v = 0.09186 = 9.18 10⁻² m/s
This is the spped of the block plus bullet rsystem right after the crash
We substitute calculate in equation (1)
m v₀ = (m + M) v
v₀ = v (m + M) / m
v₀ = 0.09186 (0.008 + 0.992) /0.008
v₀ = 11.5 m / s