Answer: The first one
Explanation: My best guess is in the pic attached. Hope this helps.
Try this solution, answers are marked with red colour.
Work done is when a force is exerted to cause a displacement in a certain object.
the equation for work done ;
work done = force applied * displacement of the object
when the force applied is not in the same direction as that of the displacement of the object then the effect of the force is not its whole value. The force is then applied at an angle to that of the displacement of the object, then the resultant force is the force exerted* cos of the angle between force and displacement, in this instance the angle is 40 °.
the new equation is then;
work done = force cos 40° * displacement
after substitution,
work = 25 N * 0.76 * 50 m
= 957.55 J
round it off
= 9.6 *10² J
the correct answer is B
Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 (
)
β₂ - β₁ = 10
log \frac{I_2}{I_1} =
= 3
= 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ =
r₂ = 0.316 m