Answer:
E = 3544.44 N/C
Explanation:
Given:
- charge Q = 2.2 *10^-6 C
- Length L = 1.3 m
Find:
The Electric Field strength E @ a = 1.8 m
Solution:
- The differential electric field dE due to infinitesimal charge dq can be considered as a point charge at a distance of r is given by:
dE = k*dq / r^2
- The charge Q is spread over entire length L, hence:
dq = (Q / L ) * dx
-The resulting dE:
dE = (k*Q/L)*(dx / r^2)
- point P lies on the x- axis with distance (x+a) from differential charge from:
dE = (k*Q/L)*(dx / (x+a)^2)
- Integrate dE over length 0 to L
E = (-k*Q/L)*( 1 / (x+a) )
E = (-k*Q/L)* (1 / a - 1 / (L+a))
E = (-k*Q/L)* (L / a(L+a))
E = (k*Q / a(L+a))
- Evaluate E @ a = 1.8 m
E =(8.99*10^9 * 2.2*10^-6 / 1.8*(1.3+1.8))
E = 3544.44 N/C
Gas. I know this because first you will need to do the equator so I will say gas
El kilogramo de fuerza, o kilopond, es una unidad de fuerza métrica gravitacional. Es igual a la magnitud de la fuerza ejercida sobre un kilogramo de masa en un campo gravitatorio de 9.80665 m / s².
Answer:
<h3>The binding energy of sodium Na=<em>5.407791×10⁹J</em></h3>
Explanation:
<h3>Greetings !</h3>
Binding energy, amount of energy required to separate a particle from a system of particles or to disperse all the particles of the system. Binding energy is especially applicable to subatomic particles in atomic nuclei, to electrons bound to nuclei in atoms, and to atoms and ions bound together in crystals.
<h2>Formula : Eb=(Δm)c²</h2><h3>where:Eb= binding energy</h3><h3> .Δm= mass defect(kg)</h3><h3> c= speed of light 3.00×10⁸ms¯¹</h3><h2 /><h3>
<u>Given</u><u> </u><u>values</u></h3>
- m= 18.02597
- c=3.00×10⁸ms¯¹
<h3><u>required </u><u>value</u></h3>
<h3><u>Solution:</u></h3>
- Eb=(Δm)c²
- Eb=(18.02597)*(3.00*10⁸ms¯¹
- Eb=5.407791*10⁹J
In physics, spacetime is any mathematical model which fuses the three dimensions of space and the one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive where and when events occur differently.