Complete question is;
A microwave oven operates at a frequency of 2400 MHz. The height of the oven cavity is 25 cm and the base measures 30 cm by 30 cm. Assume that microwave energy is generated uniformly on the upper surface of the cavity and propagates directly
downward toward the base. The base is lined with a material that completely absorbs microwave energy. The total microwave energy content of the cavity is 0.50 mJ.
Answer:
Power ≈ 600,000 W
Explanation:
We are given;
Frequency; f = 2400 Hz
height of the oven cavity; h = 25 cm = 0.25 m
base area; A = 30 cm by 30 cm = 0.3m × 0.3m = 0.09 m²
total microwave energy content of the cavity; E = 0.50 mJ = 0.5 × 10^(-3) J
We want to find the power output and we know that formula for power is;
P = workdone/time taken
Formula for time here is;
t = h/c
Where c is speed of light = 3 × 10^(8) m/s
Thus;
t = 0.25/(3 × 10^(8))
t = 8.333 × 10^(-10) s
Thus;
Power = (0.5 × 10^(-3))/(8.333 × 10^(-10))
Power ≈ 600,000 W
Answer:
Yes
Explanation:
The speed of light when it travels through glass, diamond, etc, the light travels at different speed from the speed of light. Speed of the light in material is related to the index of refraction.
The change in speed which occurs when the light passes from one medium to the another is responsible for bending of the light which is called as refraction.
<u>When the light goes into a medium with the higher index of the refraction, light bends towards normal. Conversely, if the light traveling goes from higher refractive index to lower refractive index, it will bend away from the normal.
</u>
<u>Hence, the refraction is different in both the scenario.</u>
Answer:
Explanation:
Density = Mass / Volume = 850 / 40*10*5 = 0.425 g /cm^3
Answer:
the period of the 16 m pendulum is twice the period of the 4 m pendulum
Explanation:
Recall that the period (T) of a pendulum of length (L) is defined as:

where "g" is the local acceleration of gravity.
SInce both pendulums are at the same place, "g" is the same for both, and when we compare the two periods, we get:

therefore the period of the 16 m pendulum is twice the period of the 4 m pendulum.