Good morning.
We have:

Where
j is the unitary vector in the direction of the
y-axis.
We have that

We add the vector
-a to both sides:

Therefore, the magnitude of
b is
47 units.
Answer:
<h2>3.36J</h2>
Explanation:
Step one:
given data
mass m= 1.3kg
distance moved s= 2.8m
opposing frictional force= 0.34N
assume g= 9.81m/s^2
we know that work done= force *distance moved
1. work done to push the book= 1.55*2.8=4.34J
2. Work against friction = force of friction x distance
= 0.34*2.8=0.952J
Step two:
the work done on the book is the net work, which is
Network done= work done to push the book- Work against friction
Network done= 4.32-0.952=3.36J
<u>Therefore the work of the 1.55N 3.36J</u>
The amount of power change if less work is done in more time"then the amount of power will decrease".
<u>Option: B</u>
<u>Explanation:</u>
The rate of performing any work or activity by transferring amount of energy per unit time is understood as power. The unit of power is watt
Here this equation showcase that power is directly proportional to the work but dependent upon time as time is inversely proportional to the power i.e as time increases power decreases and vice versa.
This can be understood from an instance, on moving a load up a flight of stairs, the similar amount of work is done, no matter how heavy but when the work is done in a shorter period of time more power is required.
Answer:
Efficiency of a machine is how well the machine works and what the machine is capable of doing.
Mechanical advantage=Load/Effort.
720/180=4
The magnitude<span> of a </span>velocity<span> vector is </span>called<span> speed. Supposethat a wind is blowing in from the direction at a speed of 50 km/h. (This meansthat the direction from which the wind blows is west of the northerly direction.) Apilot is steering a plane in the direction at an airspeed (speed in still air) of250 km/h
</span>