Each successive graph is at a later time. You can see from these graphs how the amplitude of the total electric field changes, but the positions of the crests and troughs (called antinodes) and places of zero field (called nodes) never change.!!!!!!!!!!!!!!!!!
Answer:
1.04 s
Explanation:
The computation is shown below:
As we know that
t = t' × 1 ÷ (√(1 - (v/c)^2)
here
v = 0.5c
t = 1.20 -s
So,
1.20 = t' × 1 ÷ (√(1 - (0.5/c)^2)
1.20 = t' × 1 ÷ (√(1 - (0.5)^2)
1.20 = t' ÷ √0.75
1.20 = t' ÷ 0.866
t' = 0.866 × 1.20
= 1.04 s
The above formula should be applied
Answer:
14,700 N
Explanation:
The hyppo is standing completely submerged on the bottom of the lake. Since it is still, it means that the net force acting on it is zero: so, the weight of the hyppo (W), pushing downward, is balanced by the upward normal force, N:
(1)
the weight of the hyppo is

where m is the hyppo's mass and g is the gravitational acceleration; therefore, solving eq.(1) for N, we find

Answer: 114 km/h
Explanation:
The formula for determining average speed is expressed as
Average speed = total distance/total time
The car travels 85 km in the first half hour of a trip. The car continues to travel for 2 more hours and travels 200 km. It means that the total distance that the car travels is
85 + 200 = 285 km
The total time spent by the car is
0.5 + 2 = 2.5 hours
Therefore,
Average speed = 285/2.5 = 114 km/h