1) describe the life cycle of a star before it collapses into a black hole.
1) describe the life cycle of a star before it collapses into a black hole.ans: A star's life cycle is determined by its mass. The larger its mass, the shorter its life cycle. A star's mass is determined by the amount of matter that is available in its nebula, the giant cloud of gas and dust from which it was born. Over time, the hydrogen gas in the nebula is pulled together by gravity and it begins to spin. As the gas spins faster, it heats up and becomes as a protostar. Eventually the temperature reaches 15,000,000 degrees and nuclear fusion occurs in the cloud's core. The cloud begins to glow brightly, contracts a little, and becomes stable. It is now a main sequence star and will remain in this stage, shining for millions to billions of years to come. This is the stage our Sun is at right now.
2) describe the life cycle of a star before it becomes a dwarf.
ans: The life cycle of a low mass star (left oval) and a high mass star (right oval). ... As the core collapses, the outer layers of the star are expelled. A planetary nebula is formed by the outer layers. The core remains as a white dwarf and eventually cools to become a black dwarf.
3) what is the likely outcome of our sun?
ans: All stars die, and eventually — in about 5 billion years — our sun will, too. Once its supply of hydrogen is exhausted, the final, dramatic stages of its life will unfold, as our host star expands to become a red giant and then tears its body to pieces to condense into a white dwarf.
Answer:
A) 8.03Hz
Explanation:
f = V/λ
Where wavelength( λ )= 30m
Speed (V) =241m/S
f= 241/30=8.03Hz
Hi there!
Assuming you're asking about the solar system, there are nine planets. But, if you're wanting to know about the universe, there are trillions and trillions of planets (most of which we haven't yet discovered).
Hope this helps!
Answer:
Option (4)
Explanation:
There are two types of collision.
Perfectly elastic collision: the collision in which the momentum and kinetic energy is conserved. There is no loss of energy in other forms of energy.
Perfectly plastic collision: The collision in which the momentum is conserved and kinetic energy is not conserved. The two bodies stick after the collision.
Here, the bullet hits the block and then embedded in the block, it is the example of plastic collision.