<u>We are given:</u>
Mass of Neptune = 1.03 * 10²⁶ kg
Distance from the center of Neptune (r) = 2.27 * 10⁷
now, computing the value of the acceleration due to gravity (g)
<u>Finding g:</u>
We know the formula:
g = G(mass of planet) / (r)²
g = [6.67 * 10⁻¹¹ * 1.03*10²⁶] / (2.27*10⁷) [since G is 6.67*10⁻¹¹]
g = (6.87 * 10¹⁵) / (5.15 * 10¹⁴)
which can be rewritten as:
g = (6.87 * 10¹⁵ * 10⁻¹⁴) / 5.15
g = (6.87 * 10¹⁵⁻¹⁴) / 5.15
g = (6.87/5.15) * 10
g = 1.34 * 10
g = 13.4 m/s² <em>(approx)</em>
<h2>
a)Acceleration due to gravity on the surface of the Sun is 274.21 m/s²</h2><h2>b)
Factor of increase in weight is 27.95</h2>
Explanation:
a) Acceleration due to gravity

Here we need to find acceleration due to gravity of Sun,
G = 6.67259 x 10⁻¹¹ N m²/kg²
Mass of sun, M = 1.989 × 10³⁰ kg
Radius of sun, r = 6.957 x 10⁸ m
Substituting,

Acceleration due to gravity on the surface of the Sun = 274.21 m/s²
b) Acceleration due to gravity in earth = 9.81 m/s²
Ratio of gravity = 274.21/9.81 = 27.95
Weight = mg
Factor of increase in weight = 27.95
The velocity of pluck 1 is 12 m/s west.
<h3>What is the conservation of momentum?</h3>
The principle of the conservation of the linear momentum states that momentum before collision is equal to momentum after collision.
Now given that;
m1u1 + m2u2 = m1v1 + m2v2
(0.1 * 15) - (0.1 * 12) = 0.1* v + (0.1 * 15)
1.5 - 1.2 = 0.1v + 1.5
0.3 - 1.5 = 0.1v
v = -1.2/0.1
v = - 12 m/s
Hence, the velocity of pluck 1 is 12 m/s west.
Learn more about linear momentum:brainly.com/question/27988315
#SPJ1
It would be A because it would make sense
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered <em>4.9 meters</em>.
ANYTHING you drop does that, if air resistance doesn't hold it back.