Answer:
As there was no attached picture, I will explain how to take the measurement of liquids in any buret which you can then apply to the specific question
Explanation:
A buret is a laboratory apparatus used to precisely measure the volume of liquids (usually alkalise or bases) used in a titration experiment. The standard buret has a capacity of 50 ml and graduated in 0.1ml though burets with smaller capacities exist.
From the question, your buret is filled to the top (0.00ml) with liquid. It is very important when taking buret readings to place the buret below your eye level so that the bottom meniscus (lower part of the liquid) can be read.
To take the buret reading, note your initial buret reading (in this case 0.00ml) then titrate the liquid base in the buret against the acid by opening the tap located at the bottom of the buret.
When the titration or reaction is complete, note the final reading against the calibration of buret. You can do this by observing the lower meniscus of the liquid remaining in the buret. (Remember to keep the buret at eye level to avoid parallax error),
The difference between your final buret reading and the initial buret reading gives you the precise volume of liquid used in the reaction.
Answer:
The material with the higher specific heat capacity would cause a more severe burn.
Explanation:
Quantity of heat (Q) = mass of material (m) × specific heat capacity (C) × temperature difference (∆T)
From the formula above, the relationship between Q and C is direct in which increase in one quantity (C) leads to a corresponding increase in the other quantity (Q)
The material with the higher specific heat capacity would produce more heat, thus cause a more severe burn.
Answer:
A to C = 6.4 km
Explanation:
A to B = 4 km
B to C = 5 km
A to C = using pythagorean theorem
a² + b² = c²
a = A to B = 4
b = B to C = 5
c = A to C
c² = 4² + 5²
c = 6.4 km (A to C)
Explanation:
z3d33sxurljt 36f
3fभथठभदाफमदखज्ञफादफज्ञादफज्ञिलफ इऋबिअऋब