Answer:
C. In the given expression -9 + p < 15 , the value of p < 24.
Step-by-step explanation:
Here, the given expression is :
-9 + p < 15
Now, solving for the value of p.
If equals are added to both sides of inequality, the inequality remains unchanged.
Now, -9 + p < 15
⇒ -9 + p + 9 < 15 + 9 (adding +9 on both sides)
or, p < 24
Hence, in the given expression -9 + p < 15 the value of p < 24.
The answer is D.
Hope I helped
Answer:
1. distance = sqrt( (7-7)^2+(2- -8)^2) = 10
2. check out desk (0,0 ) => distance = sqrt( (0- -9)^2+(0-0)^2) = 9
3. last corner ( -3, 4)
4. area = sqrt( (-10- -10)^2+(10-4)^2) x sqrt( (-3- -10)^2+(10-10)^2) = 6x7 =42
5. check desk (0,0), south direction = negative y axis => P_beginning (0,-20), P_end (0,-(20+25)) = (0,-45)
6. A(-2,-1) and B(4,-1) lie in y =-1. AB = sqrt( (-2- 4)^2+(-1- -1)^2) =6
=> area = 3.6x6 =21.6
=> peri = 2x(3.6+6) = 19.2
7. A(-5,4) and B(2,4), AB = sqrt( (-5- 2)^2+(4- -4)^2) = 7 => AB is base
=> p = peri = 7+ 8.3x2 = 23.6
=> area = sqrt[px(p-7)x(p-8.3)x(p-8.3)]
=sqrt[23.6x(23.6-7)x(23.6-8.3)x(23.6-8.3)] = 302.8
Answer:
Step-by-step explanation:
As per Janayda,
From the figure attached,
In ΔTRQ,
m∠TRQ + m∠RQT + m∠QTR = 180°
25° + m∠RQT + 35° = 180°
m∠RQT = 180° - 60°
m∠RQT = 120°
Since, m∠RQT + m∠PQT = 180° [Linear pair of angles]
m∠PQT = 180° - m∠RQT
= 180° - 120°
= 60°
In right angled triangle TPQ,
m∠TPQ + m∠PQT + m∠PTQ = 180°
90° + 60° + m∠PTQ = 180°
m∠PTQ = 180° - 150°
= 30°
Similarly, other angles can also be evaluated from the given information.
In ΔQTP and ΔNTP,
TP ≅ TP [Reflexive property]
NP ≅ PQ [Given]
ΔQTP ≅ ΔNTP [By LL postulate for congruence]
Therefore, Janayda is correct.
While Sirr is incorrect.
Since, there is not the enough information to prove ΔRTQ and ΔMTN equal, Isabelle is incorrect.
Well, first you multiply 22×3 and then add the answer by 3!. whole times denominator plus numerator!