I think that you didn't copy the answers correctly, because 1 and 2 are the same, and 3 and 4 are also the same here.
Anyways, the answer which is correct is that an electron has a charge of -1, and a proton has a charge of +1.
Electrons are negatively charged, whereas protons are positively charged. Neutrons are neutral.
Kilo: a prefix used on metric units to indicate a multiple of 1000. For example 1kg = 1000 g
The answer to this question is bohr Greek
The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
H2 is known to exist. For dihydrogen, H2, we can identify the frontier molecular orbitals (FMOs). The highest occupied molecular orbital (or HOMO) is the σ (sigma) 1s MO. The lowest unoccupied MO (LUMO) is the σ* (sigma star) 1s MO which is antibonding.