The two half-reactions are...
Ag→Ag+
and...
NO3→NO
Let's start by balancing the first half-reaction...
Ag→Ag+
The amounts are already balanced; 1:1. The oxygens are balanced. So all that's left is to balance the charge...
Ag→Ag++e−
Now let's do the other equation... Amounts of nitrogen are balanced, so we first need to balance the oxygens...
NO3→NO
4H++NO3→NO+2H2O
Next, we need to balance charge...
4e−+4H++NO3→NO+2H2O
Now let's go ahead and rewrite each half-reaction after being balanced by themselves...
Ag→Ag++e−
4e−+4H++NO3→NO+2H2O
Now we need to multiply by some factor to get the electrons to cancel out. In this case, that factor is 4, which needs to be applied to the top half-reaction...
4(Ag→Ag++e−)=4Ag→4Ag++4e−
Then we combine this half-reaction with the second one above to get...
4Ag+4H++NO3→4Ag++NO+2H2O
Answer:
Antibiotics destroy bacteria
Answer:
- Initial: forward rate > reverse rate
- Equilibrium: forward rate = reverse rate
Explanation:
2NO₂(g) → N₂O₄(g) Kc=4.7
The definition of <em>equilibrium</em> is when the forward rate and the reverse rate are <em>equal</em>.
Because in the initial state there's only NO₂, there's no possibility for the reverse reaction (from N₂O₄ to NO₂). Thus the forward rate will be larger than the reverse rate.
Answer:
b. CH₂Cl₂ is more volatile than CH₂Br₂ because of the large dispersion forces in CH₂Br₂
Explanation:
CH₂Cl₂ is more volatile than CH₂Br₂ (b.p of CH₂Cl₂ = 39,6 °C; b.p of CH₂Br₂ = 96,95°C). Thus, c. and d. are FALSE
Dipole-dipole interactions in CH₂Cl₂ are greater than the dipole-dipole interactions in CH₂Br₂ because Cl is more electronegative that Br (Cl = 3,16; Br = 2,96). But this mean CH₂Cl₂ is less volatile than CH₂Br₂ but it is false.
There are large dispersion forces in CH₂Br₂ because Br has more electrons and protons than Cl. Large disperson forces mean CH₂Br₂ is less volatile than CH₂Cl₂ and it is true.
I hope it helps!
Answer:
MgF2 + Li2CO3 ---> MgCO3 + 2LiF
Explanation: