Answer:
<h2>640N/cm^2</h2>
Answer D is correct
Explanation:

hope this helps
brainliest appreciated
good luck! have a nice day!
The equation that would allow us to calculate for the acceleration given the distance is written below,
a = (Vf² - Vo²) / 2d
where a is the acceleration, Vf is the final velocity, Vo is the initial velocity, and d is distance.
Substituting the known values,
a = ((84 ft/s)² - (72 ft/s)²) / 2(180 ft) = 5.2 ft/s²
Then, the equation that would relate the initial velocity, distance, acceleration and time is calculated through the equation,
d = Vot + 0.5at²
Substituting the known values,
180 = 72(t) + 0.5(5.2)(t²)
The value of t from the equation is 2.3 s
<em>ANSWER: 2.3 s</em>
Momentum = (mass) x (speed)
Mass is constant, so the rate of change of momentum is
(mass) x (rate of change of speed) .
But (rate of change of speed ) is just acceleration.
So the rate of change of momentum is (mass) x (acceleration).
But (mass) x (acceleration) is Force.
So Force is the rate of change of momentum. Verrrrrrrry interesting !
In this problem, Force = (40 kg) x (9 m/s²) = 360 newtons.
One 'Newton' is one kilogram-meter per second² .
Unit of momentum is (kilogram)-(meter per second), so 'newton'
is also a unit of time rate of change of momentum.
Rate of change of momentum is 360 momentum units per second.
Answer:

Explanation:
From frequency of oscillation

Initially with the suspended string, the above equation is correct for the relation, hence

where k is force constant and m is the mass
When the spring is cut into half, by physics, the force constant will be doubled as they are inversely proportional

Employing f2/ f1, we have

Answer:
<em>The product of the object's weight and the horizontal distance between the two positions.</em>
<em></em>
Explanation:
Work is the product of force and the distance through which this force is moved. The distance moved can be vertical, or horizontal. For two bodies located the same distance from the center of the earth, the work done will be the product of the weight of the product and the horizontal distance between the two positions. <em>If the vertical work is needed, then the work is zero, since there is no height gradient between them</em>.