Answer:
352,088.37888Joules
Explanation:
Complete question;
A hiker of mass 53 kg is going to climb a mountain with elevation 2,574 ft.
A) If the hiker starts climbing at an elevation of 350 ft., what will their change in gravitational potential energy be, in joules, once they reach the top? (Assume the zero of gravitational potential is at sea level)
Chane in potential energy is expressed as;
ΔGPH = mgΔH
m is the mass of the hiker
g is the acceleration due to gravity;
ΔH is the change in height
Given
m = 53kg
g = 9.8m/s²
ΔH = 2574-350 = 2224ft
since 1ft = 0.3048m
2224ft = (2224*0.3048)m = 677.8752m
Required
Gravitational potential energy
Substitute the values into the formula;
ΔGPH = mgΔH
ΔGPH = 53(9.8)(677.8752)
ΔGPH = 352,088.37888Joules
Hence the gravitational potential energy is 352,088.37888Joules
Answer:
it is a the answer is a btw
Explanation:
Answer:
ndmnk.nhlwhfliehfhewfiberjihfbjewbfujebwgwuerkjfhwg.augfukGARWufg.hbjkrwfhogujbr
Explanation: fhulhfuwgeuikBWGFEIUgwfk.ewgukhGFHGUE<FR<HKEl8oiufkhy48e6r3yuogfkh
Answer:
The radius of the disc is 2.098 m.
(e) is correct option.
Explanation:
Given that,
Moment of inertia I = 12100 kg-m²
Mass of disc m = 5500 kg
Moment of inertia :
The moment of inertia is equal to the product of the mass and square of the radius.
The moment of inertia of the disc is given by
Where, m = mass of disc
r = radius of the disc
Put the value into the formula
Hence, The radius of the disc is 2.098 m.