Answer:
88.34 N directed towards the center of the circle
Explanation:
Applying,
F = mv²/r................... Equation 1
F = Force needed to keep the mass in a circle, m = mass of the mass, v = velocity of the mass, r = radius of the circle.
But,
v = 2πr/t................... Equation 2
Where t = time, π = pie
Substitute equation 2 into equation 1
F = m(2πr/t)²/r
F = 4π²r²m/t²r
F = 4π²rm/t²............. Equation 3
From the question,
Given: m = 0.8 kg, r = 0.7 m, t = 0.5 s
Constant: π = 3.14
Substitute these values into equation 3
F = 4(3.14²)(0.7)(0.8)/0.5²
F = 88.34 N directed towards the center of the circle
A magnet is a substance which attracts or repels another substance. In a magnet, the atoms are aligned in a particular direction in domains. A magnet has two poles: North pole and South pole. The domains are oppositely aligned in unlike poles. Like poles repel each other where as unlike poles attract each other. Hence, when we bring like poles closer, repulsion would be experienced. In case of unlike poles, they would stick together.
They are the same. If this is all happening on Earth, then the ball's acceleration is 9.8 m/s^2 in either case. That's the acceleration of gravity around here.
<h2>
Weight of astronaut 2450 miles above the Earth is 80.38 pounds</h2>
Explanation:
Given that gravitational force, F, between an object and the Earth is inversely proportional to the square of the distance from the object and the center of the Earth.

Where F is gravitational force between an object and the Earth, r is the distance from the object and the center of the Earth and k is a constant.
Radius of Earth = 4000 miles
In case 1 an astronaut weighs 209 pounds on the surface of the Earth,

Now we need to find weight of astronaut 2450 miles above the Earth
r = 4000 + 2450 = 6450 miles

Weight of astronaut 2450 miles above the Earth is 80.38 pounds