Answer:
9.23 m/s
Explanation:
Let, the initial velocity be ux.
The horizontal velocity remans the same. So, time required, t = 25/ux
For vertical component, we know,
h = uy*t + (1/2)*g*t^2 [ g is positive because ball is falling downward ]
Putting in the values, we get,
36 = 0*(25/ux) + 1/2 * 9.81 * (25/u)^2
36 = 3065.625/u^2
u^2 = 85.15625
u = 9.23
[ If there's a problem with the solution, please inform me ]
Jsbdbansnduxjxhxjxjjxjxjxjxdjx
In the second 30 mins, the speed should be 20 + 1.5 = 21.5 km/h
So S = 21.5 * 30/60 = 10.75 km
Answer:
Velocity=1.1m/s
Amplitude=0.35m
Explanation:
Given:
time 't' = 2.9s
wavelength 'λ'= 5.5m
distance 'd'=0.7m
The time period 't' is the time b/w two successive waves. Therefore, the time it takes from the boat to travel from its highest point to its lowest is a half period.
So, T = 2 x 2.9 => 5.8 s
As we know that frequency is the reciprocal of time period, we have
f= 1/T = 1/5.8 =>0.2 Hz
In order to find how fast are the waves traveling, the velocity is given by
Velocity = f λ
V= 0.2 x 5.5 =>1.1m/s
The distance between the boat's highest point to its lowest point is double the amplitude.
Therefore , we can write
Amplitude 'A'= d/2 =>0.7/2 =>0.35m
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the bullet is 
The mass of the wood is 
The height attained by the combined mass is 
Generally according to the law of energy conservation

Here
is the kinetic energy of the bullet before collision.
and
is the potential energy of the combined mass of bullet and wood at the height h which is mathematically represented as
![PE_m = [m_b + m_w] * g * h](https://tex.z-dn.net/?f=PE_m%20%20%3D%20%20%5Bm_b%20%20%2B%20m_w%5D%20%2A%20%20g%20%2A%20%20h)
So
![KE_b =PE_c = [0.005 + 0.90] * 9.8 *0.08](https://tex.z-dn.net/?f=KE_b%20%3DPE_c%20%20%20%3D%20%5B0.005%20%20%2B%200.90%5D%20%2A%209.8%20%2A0.08)
=> 