Answer:
similarity
Starch, cellulose,dextran and glycogen are all polymers of glucose
differences
monomer/glucose glycosidic bond branching
1.starch α glucose 1-4 and 1-6 branch and unbranced
amylose 1-4 unbranched
amylopectin 1-4 and 1-6 branched
2. dextran α glucose 1-6 branched
3. cellulose β glucose 1-4 unbranched, linear
4. glycogen α glucose 1-4 and 1-6 branched (shorter
branches than starch)
Enzyme: amlase acts on starch and cellulase acts on cellulose as they are specific for their substrates.
Explanation:
Starch: Consists of both branched amylopectin and unbranched amylose
Enzymes: Enzymes are specific as the gulcose molecule in starch is α and in cellulose is β which differ in their position of hydroxyl groups at anomeric carbon, their structures differ so they form different bonds. Active sites of enzymes can act only on specific bonds a sthey can fit to their specific substrates.
Answer:
A mutation in Ras protein which will cause hyperactivity will eventually lead to cancer.
Explanation:
Ras protein was first discovered in Rous sarcoma virus (RSV) and it is a proto-oncogene product. In normal conditions, it plays an important role in cellular signalling but in case of gain of function/hyperactivity it gets converted into cellular oncogene. In several types of cancers a point mutation has been reported in Ras protein.
Just like G protein, it is also a GTPase switch protein but unlike G protein which is trimeric, it is monomeric. In the plasma membrane, it is attached with the help of lipids like prenyl or palmitoyl groups. During signal transduction pathway when it gets activated, it downstream activates MAPK pathway and causes gene expression but when it gets hyperactivated it causes over expression of genes leading to cancer.
Answer:
c
Explanation:
Most DNA is located in the cell nucleus (where it is called nuclear DNA)