Answer: Ordinal measurement scale
Step-by-step explanation:
In ordinal measurement scale the order of values or variables are very important. Just as in the case above, the rating from 1-3 is according to the order of it's importance.
Thanks
Nicoles pattern:
1
5
17
53
161
Ian’s pattern:
0
1
3
7
15
Ordered pair:
(1, 0)
(5, 1)
(17, 3)
(53, 7)
(161, 15)
Table 1 -
Sequence 1:
9
11
13
15
17
Sequence 2:
5
8
11
14
17
Ordered pair:
(9, 5)
(11, 8)
(13, 11)
(15, 14)
(17, 17)
Table 2 -
Sequence 1:
20
16
12
8
4
Sequence 2:
20
17
14
11
8
Ordered pair:
(20, 20)
(16, 17)
(12, 14)
(8, 11)
(4, 8)
Table 3 -
Sequence 1:
1
3
7
15
31
Sequence 2:
40
24
16
12
10
Ordered pair:
(1, 40)
(3, 24)
(7, 16)
(15, 12)
(31, 10)
Step-by-step explanation:
since packages are similarsimilar packages. The ratio of the volumes is 8:125. Determine the dimensions of the bigger package. The dimensions of the smaller package are... Height= 45cm, Length= 80cm, and Width= 25cm.
Length of bigger package = <em><u>8</u></em><em><u>0</u></em><em><u>×</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>/</u></em><em><u>8</u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>0</u></em><em><u>c</u></em><em><u>m</u></em>
Width of bigger package =<em><u>2</u></em><em><u>5</u></em><em><u>×</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>/</u></em><em><u>8</u></em><em><u>=</u></em><em><u>3</u></em><em><u>9</u></em><em><u>0</u></em><em><u>.</u></em><em><u>6</u></em><em><u>2</u></em><em><u>5</u></em><em><u>c</u></em><em><u>m</u></em>
Height of bigger package =<em><u>4</u></em><em><u>5</u></em><em><u>×</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>/</u></em><em><u>8</u></em><em><u>=</u></em><em><u>7</u></em><em><u>0</u></em><em><u>3</u></em><em><u>.</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>cm</u></em>
Answer:
hi there is that something you can block
The factoring can be done similarly to a quadratic equation thanks to x^4 being the square value of x^2.
<span>x^4 + 6x^2 - 7
x^4</span><span> - x^2</span> + 7x^2 - 7
(x^4 - x^2) + (<span>7x^2 - 7)
</span>x^2(x^2 - 1) + 7(<span>x^2 - 1)
</span>(x^2 + 7)(x^2 - 1)
<span>(x^2 + 7)(x - 1)(x + 1)
</span>
Factored completely we get: <span>(x^2 + 7)(x - 1)(x + 1)</span>