Answer:
![[H^+]=1.78x10^{-8}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D1.78x10%5E%7B-8%7DM)
Explanation:
Hello there!
In this case, according to the given information about the pH, it is firstly necessary for us to remember that the pH is defined as the potential of the hydrogen ions in the solution and the concentration of those ions represents how many of them are present in the solution; in such a way, it is possible for us use:
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
Whereas the concentration of hydrogen ions can be calculated as follows:
![[H^+]=10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D)
So we plug in the given pH to obtain:
![[H^+]=10^{-7.75}=1.78x10^{-8}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-7.75%7D%3D1.78x10%5E%7B-8%7DM)
Regards!
Answer:
Obtain the conversion factor by dividing the required yield (from Step 2) by the old yield (from Step 1). That is, conversion factor = (required yield)/(recipe yield) or conversion factor = what you NEED ÷ what you HAVE.
Explanation:
Answer:
4
Explanation:
Since there are 3 carbons on the left side, make the coefficient of CO2 equal to 3.
Also, since there are 8 hydrogen on the left side, make the coefficient of H2O equal to 4.
This means there are 3(2)+4=10 oxygen atoms on the right, making the coefficient of O2 equal to 5.