Answer:
v = 42.92 m/s
Explanation:
Given,
initial speed of the ball, v = 11 m/s
time taken to hit the ground = 5.5 m/s
velocity of the ball just before it hit the ground, v = ?
time taken by the ball to reach the maximum height
using equation of motion
v = u + at
final velocity = 0 m/s
0 = 11 - 9.8 t
t = 1.12 s.
time taken by the ball to reach the water from the maximum height
t' - 5.5 -1.12 = 4.38 s
using equation of motion for the calculation of speed just before it hit the water.
v = u + a t
v = 0 + 9.8 x 4.38
v = 42.92 m/s
Velocity of the ball just before it reaches the water is equal to v = 42.92 m/s
Answer:
C) three
Explanation:
Let gram of gold required be m . Let temperature change in both be Δ t .
heat absorbed = mass x specific heat x change in temperature
for copper
heat absorbed = 1 x .385 x Δt
for gold
heat absorbed = m x .129 x Δt
So
m x .129 x Δt = 1 x .385 x Δt
m = 2.98
= 3 g approximately .
Explanation:
Given parameters:
Force = 30N
Weight Susan = 45kg
Weight of Dad = 100kg
Unknown:
Acceleration of Susan = ?
Acceleration of Dad = ?
Solution:
Force = mass x acceleration
Acceleration = 
Acceleration of Susan =
= 0.67m/s²
Acceleration of Dad =
= 0.3m/s²
Learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly
Answer:
series
Explanation:
In a series circuit all the components are attached to one branch, so that if one component fails, all the others stop working. In a parallel circuit, however, the components are wired in separate branches, so that even if one branch fails, the rest are not disrupted.
Explanation:
initial velocity U = 20m/s
Final velocity V = 35m/s
time = 15.0 secs
change in velocity = 35 - 15
= 20m/s
acceleration a = change in velocity/time V/t
a = (35-20)/15
a= 15/15
Hence, your acceleration is 1m/s^2