The work done by a rotating object can be calculated by the formula Work = Torque * angle.
This is analog to the work done by the linear motion where torque is analog to force and angle is analog to distance. This is Work = Force * distance.
An example will help you. Say that you want to calculate the work made by an engine that rotates a propeller with a torque of 1000 Newton*meter over 50 revolution.
The formula is Work = torque * angle.
Torque = 1000 N*m
Angle = [50 revolutions] * [2π radians/revolution] = 100π radians
=> Work = [1000 N*m] * [100π radians] = 100000π Joules ≈ 314159 Joules of work.
C. is correct : ) it is applied when you push and that causes the desk to move
Work = (force) x (distance)
The work he did: Work = (700 N) x (4m) = 2,800 joules
The rate at which
he did it (power): Work/time = 2,800 joules/2 sec
= 1,400 joules/sec
= 1,400 watts
= 1.877... horsepower (rounded)
Answer:
the object's mass is 50 kg
Explanation:
We use Newton's second law to solve for the mass:
F = m * a , then m = F / a
In our case, the acceleration is the gravitational acceleration on the planet, and the force is the weight of the object on the planet. So we get:
m = w / a = 650 N / 13 m/s^2 = 50 kg
Then, the object's mass is 50 kg.