Answer:

Explanation:
When acetic acid solution and barium hydroxide solution react together to give an aqueous solution of barium acetate and water
The balanced chemical reaction will be given by

Answer:
Plants use photosynthesis to make glucose. Glucose is also know as sugar. You can tell it is present if the plant receives sunlight as well as water.
Explanation:
MARK BRAINLIEST
Electrolysis can be used to separate a substance into its original components/elements and it was through this process that a number of elements have been discovered and are still produced in today's industry.
First, they may produce direct and relatively short-lived effects, such as stimulation of the isolated uterus or relaxation of the isolated tracheal chain preparation.
Secondly, in doses too low to produce a direct effect, they may produce a long-term potentiation of the effects of other stimulants.
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.