Answer:
( °F − 32) × 5/9 = °C
Explanation:
Also there is a mental calculation to convert from Fahrenheit to Celsius. The ratio 5/9 is approximately equal 0.55555….
Subtract 32º to adapt the equivalent in the Fahrenheit scale.
Divide the degrees Celsius by 2 (multiply by 0.5).
Take 1/10 of this number (0.5 * 1/10 = 0.05) and add it to the number obtained previously.
Example: Convert 98.6º F to Centigrade.
98.6 - 32 = 66.6
66.6 * 1/2 = 33.3
33.3 * 1/10 = 3.3
33.3 + 3.3 = 36.6 which is an approximation in degrees Centigrade
Answer: IONIC EQUATION.
Explanation:
A chemical equation is defined as the form by which a chemical reaction is represented mathematically. These are written in the form of symbols and chemical formulas of reactants and products which are taking part in the chemical reaction. A chemical equation can be written in two forms, these include:
--> MOLECULAR EQUATION: in this type of equations, the compounds are written and represented in a molecular form. This is sometimes referred to as a balanced equation.
--> IONIC EQUATION: This is a type of chemical equation in which the electrolytes in aqueous solution are expressed as dissociated ions. A typical illustrated example is seen in the reaction between AgNO3(aq) and NaCl(aq) :
Ag+(aq) + NO3-(aq) + Na+(aq) + Cl-(aq) → AgCl(s) + Na+(aq) + NO3-(aq)
The (aq) written in the above equation signifies they are in aqueous solution.
<u>Halogens are reactive because:</u>
They have high electronegativity and also high nuclear charge. So, they are reactive and also gain an electron when they react with other elements.
Since they are very reactive, halogens are very harmful to living organisms. Some of the halogens are fluorine, chlorine, bromine, iodine, astatine. These are mostly non metals. Fluorine is one of the most reactive gas and also very toxic gas. When Fluorine reacts with glass along with small amounts of water, it forms silicon tetra fluoride (SiF4). Hence fluorine should be handled with substances like the inert organofluorine compound Teflon.
Answer:
Glucose and oxygen are required for cellular respiration. As the law of conversation states, in a biochemical reaction, mass is conserved. The mass of hydrogen in the glucose is therefore conserved in the water molecules products.