Molarity is a measure of a solution's concentration calculation by getting the ratio of the number of moles of solute to the total volume of solution. This has a unit of M or molar, equivalent to mole/L.
It is more important and meaningful to know the molarity rather than if the solution is dilute or concentrated because molarity gives the QUANTITATIVE approach of knowing the concentration while the second one only gives us the QUALITATIVE description of the solution. Hence, we are able to calculate for other unknown parameters if we have the molarity known.
Answer:
Only changes in temperature will influence the equilibrium constant
. The system will shift in response to certain external shocks. At the new equilibrium
will still be equal to
, but the final concentrations will be different.
The question is asking for sources of the shocks that will influence the value of
. For most reversible reactions:
- External changes in the relative concentration of the products and reactants.
For some reversible reactions that involve gases:
- Changes in pressure due to volume changes.
Catalysts do not influence the value of
. See explanation.
Explanation:
.
Similar to the rate constant, the equilibrium constant
depends only on:
the standard Gibbs energy change of the reaction, and
the absolute temperature (in degrees Kelvins.)
The reversible reaction is in a dynamic equilibrium when the rate of the forward reaction is equal to the rate of the backward reaction. Reactants are constantly converted to products; products are constantly converted back to reactants. However, at equilibrium
the two processes balance each other. The concentration of each species will stay the same.
Factors that alter the rate of one reaction more than the other will disrupt the equilibrium. These factors shall change the rate of successful collisions and hence the reaction rate.
- Changes in concentration influence the number of particles per unit space.
- Changes in temperature influence both the rate of collision and the percentage of particles with sufficient energy of reaction.
For reactions that involve gases,
- Changing the volume of the container will change the concentration of gases and change the reaction rate.
However, there are cases where the number of gases particles on the reactant side and the product side are equal. Rates of the forward and backward reaction will change by the same extent. In such cases, there will not be a change in the final concentrations. Similarly, catalysts change the two rates by the same extent and will not change the final concentrations. Adding noble gases will also change the pressure. However, concentrations stay the same and the equilibrium position will not change.
Answer:
The final and initial concentration of the acid and it's conjugate base are approximately equal, that is we use the weak acid approximation.
Explanation:
The Henderson-Hasselbalch is used to calculate the pH of a buffer solution. It depends on the weak acid approximation.
Since the weak acid ionizes only to a small extent, then we can say that [HA] ≈ [HA]i
Where [HA] = final concentration of the acid and [HA]i = initial concentration of the acid.
It also follows that [A^-] ≈ [A^-]i where [A^-] and[A^-]i refer to final and initial concentrations of the conjugate base hence the answer above.
I’m so sorry i have to do this 5L 24
The answer is D. Strong electrolytes
Strong electrolyte is a solute or solution that completely or almost completely dissociates when in solution. These are good conductors of electricity only when in molten/aqueous solution.
Strong electrolyte(aq) → Cation+(aq) + Anion−(aq)