I multiplied 48 times 15 percent which comes to 7.20
7.20 plus 48 equals 55.20
Answer:
Following are the solution to these question:
Step-by-step explanation:
Please find the complete question in the attached file.







Answer:
The maximum number of children = 16
Explanation:
The greatest number of students who can get the fruit in this way (equally) will be equal to the highest common factor between the number of bananas and the number of apples.
Number of bananas = 128 = 2 * 2 * 2 * 2 * 2 * 2 * 2
number of apples = 176 = 2 * 2 * 2 * 2 *11
We can note that:
the highest common factor = 2 * 2 * 2 * 2
the highest common factor = 16
This means that the maximum number of children to get both equally is 16
Hope this helps :)
<span>Acceleration of a passenger is centripetal acceleration, since the Ferris wheel is assumed at uniform speed:
a = omega^2*r
omega and r in terms of given data:
omega = 2*Pi/T
r = d/2
Thus:
a = 2*Pi^2*d/T^2
What forces cause this acceleration for the passenger, at either top or bottom?
At top (acceleration is downward):
Weight (m*g): downward
Normal force (Ntop): upward
Thus Newton's 2nd law reads:
m*g - Ntop = m*a
At top (acceleration is upward):
Weight (m*g): downward
Normal force (Nbottom): upward
Thus Newton's 2nd law reads:
Nbottom - m*g = m*a
Solve for normal forces in both cases. Normal force is apparent weight, the weight that the passenger thinks is her weight when measuring by any method in the gondola reference frame:
Ntop = m*(g - a)
Nbottom = m*(g + a)
Substitute a:
Ntop = m*(g - 2*Pi^2*d/T^2)
Nbottom = m*(g + 2*Pi^2*d/T^2)
We are interested in the ratio of weight (gondola reference frame weight to weight when on the ground):
Ntop/(m*g) = m*(g - 2*Pi^2*d/T^2)/(m*g)
Nbottom/(m*g) = m*(g + 2*Pi^2*d/T^2)/(m*g)
Simplify:
Ntop/(m*g) = 1 - 2*Pi^2*d/(g*T^2)
Nbottom/(m*g) = 1 + 2*Pi^2*d/(g*T^2)
Data:
d:=22 m; T:=12.5 sec; g:=9.8 N/kg;
Results:
Ntop/(m*g) = 71.64%...she feels "light"
Nbottom/(m*g) = 128.4%...she feels "heavy"</span>
The answer is: Find the mean of the differences with the other numbers in the set<span>. Add the squared differences and then divide the total by the number of items in </span>data<span> in your </span>set; t<span>ake the square root of this mean of differences to </span>find<span> the standard </span>deviation.