Answer:
92.7 km
Explanation:
Since the magnetic field due to a solenoid is given by B = μ₀Ni/L where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, N = number of turns of solenoid, L = length of cardboard tube = 58 cm = 0.58 m, , i = current in wire = 2.5 A and l = length of wire.
So, N = BL/μ₀i
Since B = 2.0 kG = 2.0 × 10³ G = 2.0 × 10³ × 10⁻⁴ T = 2.0 × 10⁻¹ T = 0.2 T
So, substituting the variables into the equation, we have
N = BL/μ₀i
N = 0.2 T × 0.58 m/(4π × 10⁻⁷ H/m × 2.5 A)
N = 1.16 Tm/(31.416 × 10⁻⁷ HA/m)
N = 0.0369 × 10⁷ turns
N = 0.0369 × 10⁷ turns
N = 3.69 × 10⁵ turns
length of wire l = NC where N = number of turns and C = circumference of tube = πD where D = diameter of tube = 8.0 cm = 0.08 m
So, l = NC
= NπD
= πND
= π × 3.69 × 10⁵ turns × 0.08 m
= 0.9274 × 10⁵ m = 9.274 × 10⁴ m
= 92.74 × 10³ m
= 92.74 km
≅ 92.7 km
Answer:
255.34 J
Explanation:
Given,
Weight of disk = 805 N
radius = 1.47 m
Force applied by the child = 49 N
time = 2.95 s
KE = ?
mass of the disk

Moment of inertia of the disk


Torque on the child

Angular acceleration

So, angular speed at t = 2.95 s

Now, KE of the merry go round

Hence, the Kinetic energy of the merry go round = 255.34 J
Answer:
P1 = 240 kPa.
Explanation:
Given the following data;
Initial volume = 0.3 m³
Final volume, V2 = 0.9 m³
Final pressure, P2 = 80 kPa
To find the initial pressure, we would use Boyle's law;
Boyles states that when the temperature of an ideal gas is kept constant, the pressure of the gas is inversely proportional to the volume occupied by the gas.
Mathematically, Boyles law is given by the formula;
Substituting into the formula, we have;




Therefore, the initial pressure of the gas is 240 kPa
Answer:
Titan.It is the largest moon of Saturn
Answer:
2.210N
Explanation:
Workdone = Force x distance
Distance = 38m , Workdone = 84J
Hence 84J = Force x 38m
Force = 84J / 38m
Force = 2.210N =2.2N