Water equal to iron is greater than cooper
The correct answer is option C. <span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
</span><span>
Keisha follows the instructions for a demonstration on gas laws.
1. Place a small marshmallow in a large plastic syringe.
2. Cap the syringe tightly.
3. Pull the plunger back to double the volume of gas in the syringe.
Now, this activity is being done at the same temperature, because there is no mention of the temperature change. Thus, when the plunger is pulled back, the volume doubles, so pressure will decrease. Therefore, </span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
Consider a long train moving at speed v. Now consider a passenger throwing a ball inside this train, towards the back of the train, with same velocity v (but in the opposite direction of the train movement).
- A passenger inside the train will see the ball moving with speed v
- For an observer outside the train, however, the ball will appear as still. In fact, for him the ball will have a speed v (given by the movement of the train) -v (velocity of the ball but moving in the opposite direction), so the net velocity will be v+(-v)=0.
<span>So when two metals of equal mass but different heat capabilities are subjected to same heat quantity, the metal with higher heat capacity have the small temperature change. Heat supplied is determined as heat capacity of the metal times the change in temperature.</span>