Electron density is the measure of theprobability of an electron being present at a specific location.
In molecules, regions of electron density are usually found around the atom, and its bonds. In de-localized orconjugated systems, such as phenol,benzene and compounds such as hemoglobin and chlorophyll, the electron density covers an entire region, i.e., in benzene they are found above and below the planar ring. This is sometimes shown diagrammatically as a series of alternating single and double bonds. In the case of phenol and benzene, a circle inside a hexagon shows the de-localized nature of the compound.
Answer:
5 moles of NO₂ will remain after the reaction is complete
Explanation:
We state the reaction:
3NO₂(g) + H₂O(l) → 2HNO₃(l) + NO(g)
3 moles of nitric oxide can react with 1 mol of water. Ratio is 3:1, so we make this rule of three:
If 3 moles of nitric oxide need 1 mol of water to react
Then, 26 moles of NO₂ may need (26 .1) / 3 = 8.67 moles of H₂O
We have 7 moles of water but we need 8.67 moles, so water is the limiting reactant because we do not have enough. In conclusion, the oxide is the reagent in excess. We can verify:
1 mol of water needs 3 moles of oxide to react
Therefore, 7 moles of water will need (7 .3)/1 = 21 moles of oxide
We have 26 moles of NO₂ and we need 21, so we still have oxide after the reaction is complete. We will have (26-21) = 5 moles of oxide that remains
Answer:
Ur answer is B. I, II, and III
Explanation:
Tectonic plates can interact with each other.
Answer:
2.12 moles of gas were added.
Explanation:
We can solve this problem by using<em> Avogadro's law</em>, which states that at constant temperature and pressure:
Where in this case:
We <u>input the data</u>:
- 6.13 L * n₂ = 11.3 L * 2.51 mol
As <em>4.63 moles is the final number of moles</em>, the number of moles added is: