Answer:
Potential
Explanation:
Potential energy is the energy stored while kinetic energy is motional energy.
Potential itself means "having capacity/energy".
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
<h2>
Answers:</h2>
-The first direct detection of gravitational waves came in 2015
-The existence of gravitational waves is predicted by Einstein's general theory of relativity
-Gravitational waves carry energy away from their sources of emission
<h2>
Explanation:</h2>
Gravitational waves were discovered (theoretically) by Albert Einstein in 1916 and "observed" for the first time in direct form in 2015 (although the results were published in 2016).
These gravitational waves are fluctuations or disturbances of space-time produced by a massive accelerated body, modifying the distances and the dimensions of objects in an imperceptible way.
In this context, an excellent example is the system of two neutron stars that orbit high speeds, producing a deformation that propagates like a wave,<u> in the same way as when a stone is thrown into the water</u>. So, in this sense, gravitational waves carry energy away from their sources
.
Therefore, the correct options are D, E and F.
Answer is 76 degrees.
The law of reflection states that when a line is reflected on a straight plane, the angle of incidence is equal to the angle of reflection. In this case, the angle of incidence and the angle reflection are 76 degrees.
Explanation:
It is given that,
When the front wheels are over the scale, the weight recorded by the scale is 5800 N, F₁ = 5800 N
When the rear wheels are over the scale, the scale reads 6500 N, F₂ = 6500
The distance between the front and rear wheels is measured to be 3.20 m, x₂ = 3.2 m
We need to find the location of center of mass behind the front wheels. Let the center of is located at a distance of x₁. Thus balancing the torques we get :

On solving the above equation we get, x₂ = 1.69 m
So, the center of mass is located at a distance of 1.69 meters behind the front wheels.