Answer:
16.6 ms or 0.0166 s
Explanation:
If Q is the final charge, Q' is the initial charge, C the capacitance ,R is the resistance , t the time taken and τ the time constant,
[tex]Q = Q'( 1- e^{-t\div \tau })
τ = R C = (1.20×10³) (20×10⁻⁶) = 0.024 s
15 = 30 ( 1- e^{-t\div \ 0.024 })
( 1- e^{-t\div \ 0.024 }) = 15 ÷ 30
⇒ - e^{-t\div \ 0.024 }) = 0.5 -1
⇒ e^{-t\div \ 0.024 }) = 0.5
Taking logarithm to the base e on both sides of this equation,
⇒ t = 0.0166 seconds = 16.6 milli seconds
Boyle's law<span> is a gas </span>law<span>, stating that the pressure and volume of a gas have an inverse relationship , when temperature is held constant. That is PV = constant. Therefore, (PV)initial = (PV)final. 42x11 = 9x P(final). P(final) = 42x11/9 = 51.34kPa. </span>
Answer:
D I think I might be wrong its been a while scense I did something like that
The number we need in order to answer the question belongs in the space between the words "is" and "of". You left that blank blank, so there really isn't any question here to answer.
HOWEVER ... the refractive index of a medium can never be less than 1.0 , so we know for sure that <em>choice-a can't be</em> the correct answer.