1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
3 years ago
10

13. Momentum is an object’s mass times velocity. Which has more momentum? A paper airplane with a mass of 10g flying at a veloci

ty of 4m/s, or a real airplane that is parked on a runway with a mass of 1000kg and a velocity of 0m/s
Physics
1 answer:
Ivenika [448]3 years ago
5 0
Since the velocity of the real plane is 0, p=mv=0.  So the paper airplane actually has more momentum since it's value is not 0.
You might be interested in
How are transverse and longitudinal waves the same?
ludmilkaskok [199]

Explanation: dfvjdsbv dvjdbv dvuhdv

7 0
3 years ago
Which statement accurately describes the charge of the nucleus of an atom?
Aleksandr [31]

Answer:

A. The nucleus can be either positively charged or neutral.

Explanation:

The nucleus of an atom contains protons and neutrons only. Whereas electrons revolve around the nucleus. Protons are positively charged, neutrons have no charge and electrons are negatively charged.

3 0
3 years ago
If you have a yellow sheet of paper and shine a cyan light what color is the paper
Nuetrik [128]
Green would be the colour of the paper
4 0
3 years ago
Read 2 more answers
A Tennis ball falls from a height 40m above the ground the ball rebounds
worty [1.4K]

If the ball is dropped with no initial velocity, then its velocity <em>v</em> at time <em>t</em> before it hits the ground is

<em>v</em> = -<em>g t</em>

where <em>g</em> = 9.80 m/s² is the magnitude of acceleration due to gravity.

Its height <em>y</em> is

<em>y</em> = 40 m - 1/2 <em>g</em> <em>t</em>²

The ball is dropped from a 40 m height, so that it takes

0 = 40 m - 1/2 <em>g</em> <em>t</em>²

==>  <em>t</em> = √(80/<em>g</em>) s ≈ 2.86 s

for it to reach the ground, after which time it attains a velocity of

<em>v</em> = -<em>g</em> (√(80/<em>g</em>) s)

==>  <em>v</em> = -√(80<em>g</em>) m/s ≈ -28.0 m/s

During the next bounce, the ball's speed is halved, so its height is given by

<em>y</em> = (14 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

Solve <em>y</em> = 0 for <em>t</em> to see how long it's airborne during this bounce:

0 = (14 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

0 = <em>t</em> (14 m/s - 1/2 <em>g</em> <em>t</em>)

==>  <em>t</em> = 28/<em>g</em> s ≈ 2.86 s

So the ball completes 2 bounces within approximately 5.72 s, which means that after 5 s the ball has a height of

<em>y</em> = (14 m/s) (5 s - 2.86 s) - 1/2 <em>g</em> (5 s - 2.86 s)²

==>  (i) <em>y</em> ≈ 7.5 m

(ii) The ball will technically keep bouncing forever, since the speed of the ball is only getting halved each time it bounces. But <em>y</em> will converge to 0 as <em>t</em> gets arbitrarily larger. We can't realistically answer this question without being given some threshold for deciding when the ball is perfectly still.

During the first bounce, the ball starts with velocity 14 m/s, so the second bounce begins with 7 m/s, and the third with 3.5 m/s. The ball's height during this bounce is

<em>y</em> = (3.5 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

Solve <em>y</em> = 0 for <em>t</em> :

0 = (3.5 m/s) <em>t</em> - 1/2 <em>g t</em>²

0 = <em>t</em> (3.5 m/s - 1/2 <em>g</em> <em>t</em>)

==>  (iii) <em>t</em> = 7/<em>g</em> m/s ≈ 0.714 s

As we showed earlier, the ball is in the air for 2.86 s before hitting the ground for the first time, then in the air for another 2.86 s (total 5.72 s) before bouncing a second time. At the point, the ball starts with an initial velocity of 7 m/s, so its velocity at time <em>t</em> after 5.72 s (but before reaching the ground again) would be

<em>v</em> = 7 m/s - <em>g t</em>

At 6 s, the ball has velocity

(iv) <em>v</em> = 7 m/s - <em>g</em> (6 s - 5.72 s) ≈ 4.26 m/s

4 0
3 years ago
What causes air to move recirculate from one place to another
sergey [27]

Answer:air flow and the movement from where it’s coming from

Explanation:

6 0
3 years ago
Other questions:
  • Suppose the lift force on the plane in the diagram below was larger than the force of gravity. Which of the following statements
    5·1 answer
  • Rain falls vertically downward with the velocity of 3.3 m/s. a boy moves at a speed of 5 m/s east in a bicycle with an umbrella.
    5·1 answer
  • What does a star color tell you about the amount of energy it emits?
    5·2 answers
  • a piano of mass 852 kg is lifted to height of 3.5m how much gravitational potential energy is added to the piano acceleration du
    8·1 answer
  • PLEASE HELP ASAP.
    7·1 answer
  • WILL MARK BRAINLIST IIF U GIVE ME CORRECT ANSWERS
    15·2 answers
  • A dog is pulling on a leash while walking down
    9·1 answer
  • What is environment balance
    13·2 answers
  • What do you think is the reason scientists use an ellipse rather than a circle as
    12·1 answer
  • What is the total distance, side to side, that the top of the building moves during such an oscillation
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!