The astronaut's weight is not 60 kg anywhere, because kg is a unit of mass, not weight.
If the astronaut's mass is 60 kg, then his weight is (60 kg)x(acceleration of gravity).
That's 588 Newtons on Earth, and 58.8 Newtons on a planet with 1/10 Earth's gravity.
The astronaut's mass of 60 kg goes with her, and doesn't depend on where she is.
<h2>Answer: Albedo
</h2>
The <u>albedo</u> is an amount that expresses the percentage of radiation a surface reflects with respect to the incident radiation.
In other words:
This amount allows us to know the level of radiation that <u>reflects</u> a surface compared to the total <u>radiation it receives</u>.
According to this, light surfaces such as snow covered ground or white sand will have a higher albedo than dark surfaces such as carbon covered ground. It is also important to note, the albedo will be higher on glossy surfaces than on matte surfaces.
It should be noted that the albedo of the Earth is on average about
, which means that part of the radiation received by the Sun is absorbed and another part reflected back to space.
Mass have no effect for the projectile motion and u want to know the height "h"
first,
find the vertical and horizontal components of velocity
vertical component of velocity = 12 sin 61
horizontal component of velocity = 12 cos 61
now for the vertical motion ;
S = ut + (1/2) at^2
where
s = h
u = initial vertical component of velocity
t = 0.473 s
a = gravitational deceleration (-g) = -9.8 m/s^2
h=[12×sin 610×0.473]+[−9.8×(0.473)2]
u can simplify this and u will get the answer
h=.5Gt2
H=1.09m
Answer:
<h2>Part A)</h2><h2>Acceleration of the ball is 10.1 m/s/s</h2><h2>Part B)</h2><h2>the final speed of the ball is given as</h2><h2>

</h2>
Explanation:
Part a)
As we know that drag force is given as






so we have


So acceleration of the ball is



Part B)
As per kinematics we know that



Here when car in front of us applied brakes then it is slowing down due to frictional force on it
So here we can say that friction force on the car front of our car is given as

So the acceleration of car due to friction is given as



now it is given that


so here we have


so the car will accelerate due to brakes by a = - 8.52 m/s^2