<span>In the Bohr model electrons in atoms can occupy allowed orbits where they do not emit energy. Exchange of energy with the surrounding environment occurs only when an electron "jumps" from an orbit to another. Hope this answers the question. Have a nice day.</span>
is most abundant and 6310 times more than HF.
<h3>What is a strong and weak acid?</h3>
When an acid is dissolved in water, all of its molecules disintegrate, making the acid powerful.
When an acid is dissolved in water, only a small number of its molecules disintegrate, making the acid weak. Strong acids have a lower pH than weak acids.
The powerful acids include perchloric acid, chloric acid, nitric acid, sulfuric acid, hydrobromic acid, and hydroiodic acid.
Given:
Pka=3..2
pH=7
Let the volume be 1 liter
[HF]=01 M

Now,

F-:HF= 6309.57:1
Therefore, the most abundant is
and has 6310 times more than HF is
.
To know more about strong and weak acids, visit: brainly.com/question/12811944
#SPJ4
Answer:
nearer to the north pole
Explanation:
because there is more water, which is basically gone everywhere else on Mars except for the south pole which has less water than the north pole
If you are provided with Cation and an Anion with different oxidation states, then there ratio in the formula unit is adjusted as such that the oxidation number of one ion is set the coefficient of other ion and vice versa,
Example:
Let suppose you are provided with A⁺² and B⁻¹, so multiply A by 1 and B by 2 as follow,
A(B)₂
In statement we are given with Co⁺³ and SO₄⁻², so multiply Co⁺³ by 2 and SO₄⁻² by 3, hence,
Co₂(SO₄)₃
Result:
Co₂(SO₄)₃ is the correct answer.
From the equation, we can see that the molar ratio between hydrogen and oxygen is:
2 : 1
Next, we determine the moles of hydrogen and oxygen that are actually present using:
moles = mass / Mr
Hydrogen:
moles = 4 / 2 = 2
Oxygen:
10/32 = 0.3125
Therefore, it is evident that the moles of oxygen present, 0.3125, are less than those that are required for 2 moles of hydrogen, which is 1. This makes oxygen the limiting reactant, which is the one that limits the completion of a reaction.