Answer: Multiple covalent bonds may occur in atoms that contain carbon,nitrogen, or <u><em>oxygen</em></u>.
Answer:
13.8072 kj
Explanation:
Given data:
Mass of water = 100.0 g
Initial temperature = 4.0 °C
Final temperature = 37.0°C
Specific heat capacity = 4.184 j/g.°C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 37.0°C - 4.0 °C
ΔT = 33.0°C
Q = 100.0 g ×4.184 j/g.°C × 33.0°C
Q = 13807.2 j
Joule to KJ:
13807.2 j × 1kj /1000 j
13.8072 kj
Protons goes in the blank. the word can be used for both.
Answer:
1. First
2. Third
3. Fourth
4.remain the same as
Explanation:
Given the reaction equation;
Rate= k[A] [B]^3
We can see that the order of reaction is first order with respect to reactant A and third order with respect to reactant B. This gives an overall fourth order reaction.
If the concentration of A is doubled and that of B is halved. The rate of reaction remains the same.
The equivalence point of a titration is equal to its stoichiometric equivalents of analyte and titrant.
Depending on the concentration of titrant we could be adding little excess of it and this may result in persistence of color of solution. After continuous stirring for a while the excess titrant may react with dissolved CO₂ in air and thus decolorizing the solution.
<span />