A ) decrease.
B ) increase.
C ) increase, then decrease.
D ) not change.
The answer is A) decrease
Take pushing a box, for example-- You push your hardest then give out, still trying to push the box. You are doing less work than what you have started with!
( Mind marking me for branliest? ; ) )
The velocity is 1100 kilometers per hour
Given: Mass m = 5.00 Kg; Height h = 12 m; Time t = 15 s
Required: Power P = ?
Formula: P = Fd/t = mgh/t
P = (5.0 Kg)(9.8 m/s²)(12 m)/15 s
P = 39.2 Kg.m²/s² or
P = 39.2 J
The calculated mutual inductance is 8.544 x 10⁻⁵ H.
Two coils have a mutual inductance of 1 henry when emf of 1 volt is induced in coil 1 and when the current flowing through coil 2 is changing at the rate of one ampere per second.
Length of the solenoid= 5.0 cm
Area of cross-section=1.0 cm²
no of spaced turns=300 turns
turns of insulated wire=180 turns
Mutual inductance (M) = μ₀μr N1N2 A/ L
=(4xπx 10⁻⁷) x (6.3 x 10⁻³) x 300 x 180 x 1/ 5
=79.12 x 10⁻¹⁰ x 54000 / 5
=8.544 x 10⁻⁵ H
hence, the mutual inductance is 8.544 x 10⁻⁵ H.
Learn more about Mutual inductance here-
brainly.com/question/14014588
#SPJ4
Answer:
The maximum height will be 7408.8 meters
Explanation:
final velocity = initial velocity + acceleration × time
final velocity = 0 m/s + 58.8 m/s^2 ×6 s
Final velocity = 352.8 m/s
final velocity ^2 = initial velocity ^2 + 2 × acceleration × displacement
(352.8)^2 = (0)^2 + 2×58.8 ×displacement
Solving for displacement,
height = 1058.4 meters.
After this, the rocket is in free fall, we can use the same equation.
final velocity ^2 = initial velocity ^2 + 2 ×acceleration×displacement
final velocity = 0
0^2 = 352.8^2 + 2×(-9.8)×displacement
displacement = 6350.4 meters
the maximum height will be 7408.8 meters