Compared to coffee at room temperature, the molecules of the coffee at 34°C will be moving faster and colliding with one another more frequently.
Its total mechanical energy is <em>2,000 J</em>.
We don't have enough information to say anything about its heat energy, its chemical energy, or the energy due to any electrical charge it may be carrying or any magnetic field it may have.
How might a suit of armor be a good analogy for a function of the skeletal system?
It's a frame for your body and protects organs and armor protects your body from injury
a) At a position of 2.0m, the Initial energy is
all made up of the potential energy=m*g*hi<span>
and meanwhile at 1.5 all its energy is also potential energy=m*g*hf
The percentage of energy remaining is E=m*g*hi/m*g*hf x 100
and since mass and gravity are constant so it leaves us with
just E=hi/hf
which 1.5/2.0 x100= 75% so we see that we lost 25% of the
energy or 0.25 in fraction
b) Here use the equation vf^2=vi^2+2gd
<span>where g is gravity, vf is the final velocity and vi is the
initial velocity while d is the distance travelled
so in here we are looking for the vi so let us isolate that
variable
we know that at maximum height or peak, the velocity is 0 so
vf is 0
therefore,</span></span>
vi =sqrt(-2gd) <span>
vi =sqrt(-2x-9.81x1.5) </span>
<span>vi =5.4 m/s
<span>c) The energy was converted to heat due to friction with the
air and the ground.</span></span>
Answer:
to be an eginere u would have to go to college and study hard
Explanation: