Answer:
2.7ohms
Explanation:
Given parameters:
Voltage of the battery = 12V
Current = 4.5A
Unknown:
Resistance of the resistor = ?
Solution:
From Ohm's law, we know that;
V = IR
V is the voltage
I is the current
R is the resistance
So;
R =
=
= 2.7ohms
By definition we have that the final speed is:
Vf² = Vo² + 2 * a * d
Where,
Vo: Final speed
a: acceleration
d: distance.
We cleared this expression the acceleration:
a = (Vf²-Vo²) / (2 * d)
Substituting the values:
a = ((0) ^ 2- (60) ^ 2) / ((2) * (123) * (1/5280))
a = -77268 mi / h ^ 2
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is:
First you must make a free body diagram and see the acceleration of the car:
g = 32.2 feet / sec ^ 2
a = -77268 (mi / h ^ 2) * (5280/1) (feet / mi) * (1/3600) ^ 2 (h / s) ^ 2
a = -31.48 feet / sec ^ 2
A = a + g * sin (θ) = -31.48 + 32.2 * sin17.0
A = -22.07 feet / sec ^ 2
Clearing the braking distance:
Vf² = Vo² + 2 * a * d
d = (Vf²-Vo²) / (2 * a)
Substituting the values:
d = ((0) ^ 2- (60 * (5280/3600)) ^ 2) / (2 * (- 22.07))
d = 175.44 feet
answer:
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is 175.44 feet
It's negative electric charge
Answer:
F = 10.8N
Explanation:
Given the mass m = 0.4kg, v1 = 25m/s, v2 = 12m/s and t =0.5s
From Newtown's second law of motion the average force can be found. This law states that the product of the force experienced by a body and the time t of the force acting on the body is equal to the change in momentum of the body. Mathematically it can be stated as follows
F×t = m(v2 – v1)
F = m(v2 – v1)/t = 0.4(25 – 12)/0.5 = 10.8N