to have the closest number rounded up
Answer:

Explanation:
In this question, we wish to find the missing nuclei for the equation:

In order to find the missing species, we need to use the charge and mass balance law. That is, the mass should be conserved: the total mass on the left-hand side with respect to the arrow should be equal to the total mass on the right-hand side with respect to the arrow:

Notice from here that:

So far we know that the mass of X is 4. Similarly, we apply the law of charge conservation. The total charge should be conserved:

From here:

We have a particle:

Looking at the periodic table, an atom with Z = 2 corresponds to helium. This can also be written as an alpha particle:

Answer:
V of Sulfur tetrafluoride is 17.2 L
Explanation:
Given data;
T = -6°C = 267K [1° C = 273 K]
n = 786 mmol of SF4 which is 0.786 mol
P = 1 atm
from ideal gas law we have
PV = nRT
where n is mole, R is gas constant, V is volume


V of Sulfur tetrafluoride is 17.2 L
Answer:
we will use the Clausius-Clapeyron equation to estimate the vapour pressures of the boiling ethanol at sea level pressure of 760mmHg:
ln (P2/P1) =
-
)
where
P1 and P2 are the vapour pressures at temperatures T1 and T2
Δ
vapH = the enthalpy of vaporization of the ETHANOL
R = the Universal Gas Constant
In this problem,
P
1
=
100 mmHg
; T
1
=
34.7 °C
=
307.07 K
P
2
=
760mmHg
T
2
=T⁻²=?
Δ
vap
H
=
38.6 kJ/mol
R
=
0.008314 kJ⋅K
-1
mol
-1
ln
(
760/10)=(0.00325 - T⁻²) (38.6kJ⋅mol-1
/0.008314
)
0.0004368=(0.00325 - T⁻²)
T⁻²=0.002813
T² = 355.47K