Less, because thermal energy is heat so if it gets colder there is less thermal energy.
Answer: 0.00867 moldm-3
Explanation:
Since the reaction is 1st order,
Rate of reaction=∆[A]÷t
0.646-0.0146/72.8= 0.00867
Remember that in a first order reaction, the rate of reaction depends on change in the concentration of only one of the reaction species, A in the problem above.
Glycosidic bonds in starch and ester bonds in triglycerides. The glycosidic bond is considered to be the covalent synthetic bonds that connection ring-molded sugar particles to different atoms. The frame by a buildup response between a liquor or amine of one particle and the anomeric carbon of the sugar, and hence, might be O-connected or N-connected.
An aqueous solution in a 55 gallon (208 l drum), characterized by minimal buffering capacity, received 4kg of phenol and 1.5 kg of sodium phenate. What is the ph of the solution. The pka of phenol = 9.98. Mw of phenol and sodium phenate are 94 g/mol and 116 g/mol, respectively.
Volume of solution = 55 gallons = 208.2 L [ 1 gallon = 3.78 L]
moles of phenol = mass / molar mass = 4000 g / 94 = 42.55 moles
moles of sodium phenate = mass / molar mass = 1500 / 116 = 12.93 moles
pKa of phenol = 9.98
We know that the pH of buffer is calculated using Hendersen Hassalbalch's equation
pH = pKa + log [salt] / [acid]
volume is same for both the sodium phenate and phenol has we can directly take the moles of each in the formula
pH = 9.98 + log [12.93 / 42.55] = 9.46
If you look at the periodic table you will see the atomic number (the smaller number) which is 3. that identifies how many protons there are. since the lithium is neutral that means there’s a same amount of electrons.
therefore there’s 3 electrons and 3 protons