Answer:
Yes. Example: <u>Sulfur hexafluoride (SF₆) molecule</u>
Explanation:
According to the octet rule, elements tend to form chemical bonds in order to have <u>8 electrons in their valence shell</u> and gain the stable s²p⁶ electronic configuration.
However, this rule is generally followed by main group elements only.
Exception: <u>SF₆ molecule</u>
In this molecule, six fluorine atoms are attached to the central sulfur atom by single covalent bonds.
<u>Each fluorine atom has 8 electrons in their valence shells</u>. Thus, it <u>follows the octet rule.</u>
Whereas, there are <u>12 electrons around the central sulfur atom</u> in the SF₆ molecule. Therefore, <u>sulfur does not follow the octet rule.</u>
<u>Therefore, the SF₆ molecule is known as a </u><u>hypervalent molecule</u><u> or expanded-valence molecule.</u>
Answer:
Its pH value increases.
Explanation:
pH is the measure of alkalinity or acidity of a compound.
pH = - log [H+]
and pH + pOH = 14
where pOH is the measure of basicity of a solution, given by -log[OH-]
As a solution gets more basic that is higher [OH-], the pH increases, and on the other hand, as the pH of a solution decreases by one pH unit, the concentration of H+ increases by ten times.
Answer:There is no relationship between the viscosity and density of a fluid. While viscosity is the thickness or thinness of a fluid, density refers to the space between its particles. However, both properties are affected by temperature. When a fluid is heated, its particles move far apart, and it also becomes less viscous.
Answer:
Explanation:
The reaction is given as:

The reaction quotient is:
![Q_C = \dfrac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=Q_C%20%3D%20%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
From the given information:
TO find each entity in the reaction quotient, we have:
![[NH_3] = \dfrac{6.42 \times 10^{-4}}{3.5}\\ \\ NH_3 = 1.834 \times 10^{-4}](https://tex.z-dn.net/?f=%5BNH_3%5D%20%3D%20%5Cdfrac%7B6.42%20%5Ctimes%2010%5E%7B-4%7D%7D%7B3.5%7D%5C%5C%20%5C%5C%20NH_3%20%3D%201.834%20%5Ctimes%2010%5E%7B-4%7D)
![[N_2] = \dfrac{0.024 }{3.5}](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%20%5Cdfrac%7B0.024%20%7D%7B3.5%7D)
![[N_2] = 0.006857](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%200.006857)
![[H_2] =\dfrac{3.21 \times 10^{-2}}{3.5}](https://tex.z-dn.net/?f=%5BH_2%5D%20%3D%5Cdfrac%7B3.21%20%5Ctimes%2010%5E%7B-2%7D%7D%7B3.5%7D)
![[H_2] = 9.17 \times 10^{-3}](https://tex.z-dn.net/?f=%5BH_2%5D%20%3D%209.17%20%5Ctimes%2010%5E%7B-3%7D)
∴

However; given that:

By relating
, we will realize that 
The reaction is said that it is not at equilibrium and for it to be at equilibrium, then the reaction needs to proceed in the forward direction.
Runoff (Hope this helped)