The answer is A. Permeability.
Answer:
50 g Sucrose
Explanation:
Step 1: Given data
- Concentration of the solution: 2.5%
Step 2: Calculate the mass of sucrose needed to prepare the solution
The concentration of the solution is 2.5%, that is, there are 2.5 g of sucrose (solute) every 100 g of solution. The mass of sucrose needed to prepare 2000 g of solution is:
2000 g Solution × 2.5 g Sucrose/100 g Solution = 50 g Sucrose
Answer:
C) 1.3 mol
Explanation:
Using gas law we can find the initial moles of the sample of the mixture, as follows:
PV = nRT
PV / RT = n
<em>Where P is pressure: 4.0atm</em>
<em>V is volume: 9.6L</em>
<em>R is gas constant: 0.082atmL/molK</em>
<em>T is absolute temperature: 300K</em>
<em>And n are moles of the gas</em>
<em />
PV / RT = n
4.0atm*9.6L / 0.082atmL/molK300K = n
n = 1.56moles of the mixture of the gas are present into the 9.6L container
Now, 14% of this gas is hydrogen that was removed of the system, that is:
1.56mol*14% = 0.22 moles of hydrogen are removed.
Thus, moles of gas that remains in the container are:
1.56mol - 0.22mol = 1.34mol.
Right answer is:
<h3>C) 1.3 mol</h3>
The
answer is:
glucose,
a polar organic compound
silver
nitrate, an ionic compound
<span>The two have net charges
that enable them to attract with water molecules. Water molecules are partly
charged because of the arrangement of electron clouds around the molecule. The oxygen
atom in the molecule is more electronegative
than the two hydrogens. Therefore water is able to
form electrostatic attraction forces with
the charged molecules</span>
Answer:
24.9%
Explanation:
According to this question, mole fraction of NaCl in an aqueous solution is 0.0927. This means that the mole percent of NaCl in the solution is:
0.0927 × 100 = 9.27%
Let's assume that the solution contains water (solvent) + NaCl (solute), hence, the mole fraction of water will be;
100% - 9.27% = 90.73%
THEREFORE, it can be said that, NaCl contains 0.0927moles while H2O contains 9.073moles
N.B: mole = mass/molar mass
Given the Molar Mass
NaCl: 58.44 g/mol
H2O: 18.016 g/mol
For NaCl;
0.0927 = mass/58.44
mass = 0.0927 × 58.44
5.42g
For H2O;
9.073 = mass/18.016
mass = 9.073 × 18.016
= 16.35g
Total mass of solution = 16.35g + 5.42g = 21.77g
Mass percent of NaCl = mass of NaCl/total mass × 100
% mass of NaCl = 5.42g/21.77g × 100
= 0.249 × 100
= 24.9%