1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
musickatia [10]
3 years ago
15

THIS IS URGENT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Chemistry
1 answer:
Pani-rosa [81]3 years ago
3 0

Answer:

1- 1.54 mol.

2- 271.9 kPa.

3- Yes, the tires will burst.

4- 235.67 kPa.

5- As, the temperature increased, the no. of molecules that has minimum kinetic energy increases as shown in image 1 that represents the Maxwell’s Distribution of Speeds of molecules. "Kindly, see the explanation and the attached images".

<em>Explanation:</em>

<em>Q1- How many moles of nitrogen gas are in each tire?  </em>

  • To calculate the no. of moles of nitrogen gas in each tire, we can use the general law of ideal gas: PV = nRT.

where, P is the pressure of the nitrogen gas (P = 247.0 kPa/101.325 = 2.44 atm),

V is the volume of the nitrogen gas (V = 15.2 L),

n is the no. of moles of the nitrogen gas (n = ??? mole),

R is the general gas constant (R = 0.082 L.atm/mol.K),

T is the temperature of the nitrogen gas (T = 21°C + 273 = 294 K).

∴ n = PV/RT = (2.44 atm)(15.2 L)/(0.082 L/atm/mol.K)(294.0 K) = 1.54 mol.

<em>Q2: What would the maximum tire pressure be at 50 degrees C?  </em>

  • Now, the temperature is raised to be 50°C (T = 50°C + 273 = 323 K).
  • The pressure can be calculated using the general gas law: PV = nRT.

<em>∴ P = nRT/V </em>= (1.54 atm)(0.082 L/atm/mol.K)(323.0 K)/(15.2 L) = 2.68 atm = <em>271.9 kPa.</em>

<em>Q3: Will the tires burst in Moses Lake? Explain.</em>

  • <em>Yes,</em> the tires will burst because the internal pressure be 271.9 kPa that exceeds 270 kPa, the pressure above which the tires will burst.

<em>Q4: If you must let nitrogen gas out of the tire before you go, to what pressure must you reduce the tires before you start your trip? (Assume no significant change in tire volume.)  </em>

  • To get the pressure that we must begin with:
  • Firstly, we should calculate the no. of moles at:

T = 55°C + 273 = 328 K,

Pressure = 270 kPa (the pressure above which the tires will burst). (P =270 kPa/101.325 = 2.66 atm).

V = 15.2 L, as there is no significant change in tire volume.

∴ n = PV/RT = (2.66 atm)(15.2 L)/(0.082 L.atm/mol.K)(328 K) = 1.5 mol.

  • 1.5562 moles of N₂ in the tires will give a pressure of 270 kPa at 55°C, so this is the minimum moles of N₂ that will make the tires burst.
  • Now, we can enter this number of moles into the original starting conditions to tell us what pressure the tires will be at if we start with this number of moles of N₂.

P = ???  

V = 15.6 L.

n = 1.5 mol

T = 21°C + 273 = 294.0 K  

R = 0.0821 L.atm/mol.K.

∴ P = nRT/V = (1.5 mol x 0.082 x 294.0 K) / (15.6 L) = 2.2325 atm = 235.67 kPa.

<em>So, the starting pressure needs to be 235.67 kPa or just under in order for the tires not to burst.</em>

<em />

<em>Q5: Create a drawing of the tire and show a molecular view of the air molecules in the tire at 247 kpa vs the molecular view of the air molecules after the tires have been heated. Be mindful of the number of molecules that you use in your drawing in the before and after scenarios. Use a caption to describe the average kinetic energy of the molecules in both scenarios.</em>

<em />

  • As, the temperature increased, the no. of molecules that has minimum kinetic energy increases as shown in “image 1” that represents the Maxwell’s Distribution of Speeds of molecules.
  • The no. of molecules that possess a critical K.E. of molecules increases due to increasing the temperature activate the motion of molecules with high velocity as
  • (K.E. = 3RT/2), K.E. directly proportional to the temperature of the molecules (see image 2).
  • Also, the average speed of molecules increases as the K.E of the molecules increases (see image 3).

You might be interested in
A volume of 100 mL of 1.00 M HCl solution is titrated with 1.00 M NaOH solution. You added the following quantities of 1.00 M Na
s344n2d4d5 [400]

Answer:

a: before equivalence point

b: equivalence point

c: before equivalence point

d: after the eqivalence point

e: before equivalence point

f:  after the eqivalence point

Explanation:

Balanced equation of reaction:

NaOH +HCl =NaCl +H2O;

Volume of HCl is fixed and it 100ml and concentration is 1.0M

N1 and N2 normality of HCl and NaOH respectively;

V1 and V2 volume of HCl and NaOH respectively;

we have given molarity but we need normality;

Normality=molarity \times n-factor

<em>but in case of NaOH and HCl n-factor is 1 for each.</em>

hence

normality=molarity;

At equivalence point:  N_1V_1=N_2V_2

Before equivalence point : N_1V_1>N_2V_2

After the equivalence point: N_1V_1

N_1V_1=100\times1=100

case a:  5.00 mL of 1.00 M NaOH

N_2V_2=5\times1=5

N_1V_1>N_2V_2 hence it is before equivalence point

case b: 100mL of 1.00 M NaOH

N_2V_2=100\times1=100

N_1V_1=N_2V_2 hence it is equivalence point

case c:  10.0 mL of 1.00 M NaOH

N_2V_2=10\times1=10

N_1V_1>N_2V_2 hence it is before equivalence point

case d: 150 mL of 1.00 M NaOH

N_2V_2=150\times1=150

N_1V_1 hence it is after the eqivalence point

case e: 50.0 mL of 1.00 M NaOH

N_2V_2=50\times1=50

N_1V_1>N_2V_2 hence it is before equivalence point

case f: 200 mL of 1.00 M NaOH

N_2V_2=200\times1=200

N_1V_1 hence it is after the eqivalence point

7 0
3 years ago
One atom of silicon can properly be combined in a compound with
julia-pushkina [17]

Answer:

C. two atoms of oxygen.

Explanation:

Step 1: Data given

Silicon has 14 electrons

Silicon is part of Group IV, all the elements there have 4 valence electrons.

It can form a compound when 4 valence electrons bind with the 4 valence elctrons of silicon

A. four atoms of calcium.

Calcium has 2 valence elctrons. 4 atoms of calcium <u>cannot bind</u> on 1 atom of silicon since there are only 4 valence electrons.

B. one atom of chlorine.

1 atom of chlorine has 7 valence electrons. Chlorine can bind with an atom with 1 valence electron. Since silicon has 4 valence electrons, they will <u>not bind.</u>

Silicon can bind with 4 atoms of chlorine to form SiCl4

C. two atoms of oxygen.

Oxygen has 6 valence electrons, this means oxygen can bind with an element with 2 valence electrons.

Since silicon has 4 valence electrons, it <u>can bind</u> with 2 atoms of oxygen to form SiO2 (silicon dioxide).

D. three atoms of hydrogen.

Hydrogen has 1 valence electron. 1 hydrogen atom can bind with an element that has 7 valence electrons.

Three atoms of hydrogen can bind with an element that has 5 valence electrons.

Silicon <u>will not</u> bind with 3 atoms of hydrogen ( but can bind with 4 atoms of hydrogen)

5 0
3 years ago
Consider the molecule BF3. (a) What is the electron config- uration of an isolated B atom? (b) What is the electron con- figurat
anzhelika [568]

For the given molecule, we are asked to give-

  1. The electron configuration of an isolated B atom
  2. The electron configuration of an isolated F atom
  3. Hybrid orbitals should be constructed on the B atom to make the B–F bonds in Boron tri flouride
  4. valence orbitals, if any, remain unhybridized on the B atom.
  • The electron configuration of an isolated B atom:

as atomic number of B is 5

electronic configuration will be [He] 2s² 2p¹

  • The electron configuration of an isolated F atom:

as atomic number of F is 9

electronic configuration will be  [He] 2s² 2p5

  • Hybrid orbitals should be constructed on the B atom to make the B–F bonds in Boron tri flouride will be sp2.

as the one s and two of p orbital from the valance shell will hybridised to make 3 hybrid orbital of B resulting in 3 B-F bonds.

  • valence orbitals, if any, remain unhybridized on the B atom will be 1

To know more about hybrisisation:

brainly.com/question/23038117

#SPJ4

8 0
1 year ago
A box has sides of 10 cm, 8.2 cm, and 3.5 cm. What is its volume?
aksik [14]
Do length x width x height which is 10 cm x 8.2 cm and 3.5 cm. Pay close attention to sig figs as well (or if your teacher doesn't mind all that much then don't fret about it, but mine's really picky!) 
4 0
3 years ago
Read 2 more answers
How many electrons are in their outer shell?
quester [9]
Is there an attachment because it depends on the element.
5 0
3 years ago
Other questions:
  • What is the reactant in the following equation?
    5·1 answer
  • he standard enthalpies of formation for S (g), F (g), SF4 (g), and SF6 (g) are +278.8, +79.0, -775, and -1209 kJ per mole, respe
    13·1 answer
  • 7. If the pOH of an RbOH solution is 6.32, what is the concentration (molarity) of the base?
    15·1 answer
  • A chemical change always involves a change to the --- of matter
    10·1 answer
  • Arrange the following substances in order of increasing boiling point CH3OH, CH4, CH3CH2OH, HOCH2CH2OH Multiple Choice O CH3OH
    10·1 answer
  • Elements are organized into groups / families according to their physical and chemical properties. Identify the elements that's
    15·1 answer
  • A softball is thrown with 145 Joules of kinetic energy. If the ball is moving at 20.0 m/s, what is the mass of the ball in kg?
    12·1 answer
  • ELABORE 5 QUESTÕES SOBRE EQUILÍBRIO QUÍMICO, ME AJUDEM PFVR!!!!​
    13·1 answer
  • 1.80x1024 molecules of CO2 is equal to how many grams?
    7·1 answer
  • What is a factor of a solution​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!