Answer:
x=2.4t+4.9t^2
Explanation:
This equation is one of the kinematic equations to solve for distance. The original equation is as follows:
X=Xo+Vt+1/2at^2
We know that the ball starts at rest meaning that its initial velocity and position is zero.
X=0+Vt+1/2at^2
Since it is going down the ramp, you can use the acceleration of gravity constant. (9.81 m/s^2) and simplify that with the 1/2.
X=Vt+4.9t^2
Note: Since the positive direction in this problem is down, you are adding the 4.9t^2, but if a question says that the downward direction is negative, you would subtract those values.
Now, substitute in your velocity value.
X=2.4t+4.9t^2
Answer:
ramp b requires less force than ramp a
Explanation:
A geological fold<span> occurs when one or a stack of originally flat and planar surfaces, such as sedimentary strata, are bent or curved as a result of permanent deformation.
So A fold is a Bend? in a rock. Maybe.
</span>A fault<span> is a planar fracture or discontinuity in a volume of </span>rock<span>, across which there has been significant displacement as a result of </span>rock<span>-mass movement.</span>
Answer:
The diameter of the bull-wheel is 3.82
Explanation:
Given that,
Velocity = 2.0 m/s
Angular velocity = 10 rev/m
We need to calculate the diameter of bull-wheel
Using formula of angular velocity
Put the value into the formula
The diameter of the bull-wheel
Hence, The diameter of the bull-wheel is 3.82 m.
<h3><u>Solution</u><u>:</u></h3>
- Distance (d) = 112 m
- Time (t) = 4 seconds
- Let the speed be v.
- We know, speed = Distance / Time
- Therefore, v = d/t
or, v = 112 m ÷ 4 s = 28 m/s
<h3><u>Answer</u><u>:</u></h3>
<u>The </u><u>speed </u><u>of </u><u>the</u><u> </u><u>cheetah</u><u> </u><u>is </u><u>2</u><u>8</u><u> </u><u>m/</u><u>s.</u>