1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lina2011 [118]
3 years ago
13

Now, a second resistor R2 of 3.3 105 Ω is connected in parallel to the existing resistor in the circuit, and a second capacitor

C2 = 5.00 µF is connected to the existing capacitor in parallel. (a) What will be the new time constant? τ = s (b) What will be the maximum current in the circuit (leaving the battery terminal)? Imax = µA Now, we connect the second resistor R2 of 3.3 105 Ω and the second ca

Physics
1 answer:
Sedbober [7]3 years ago
6 0

Answer:

Incomplete questions

Check attachment for the first aspect of the question.

Explanation:

So let analyse the question first.

Let the former circuit have a resistor of resistance R, if a new resistor (3.3×10^5 Ω) is connected to it in parallel to R,

Then, the equivalent resistance can be calculated as

1/Req= 1/R1 + 1/R2

Therefore,

Req = R1•R2 / (R1+R2)

Req= R×3.3×10^5 / (R +3.3×10^5)

Req= 3.3×10^5R / (R +3.3×10^5)

Also, let assume the former circuit has a capacitor of capacitance C, and a new capacitor of capacitance (5 µF) is connected in parallel to the capacitor

Then, the equivalent capacitor is

Ceq=C1+ C2

Ceq= C+ 5µF

Ceq= C + 5×10^-6 F

Now,

a. Time constant of a RC circuit is given as

τ= RC

Then, τ=Req•Ceq

τ=3.3×10^5R / (R +3.3×10^5) × (C+ 5×10^-6F)

τ=(3.3×10^5R) (C+5×10^-6)/ (R+3.3×10^5)

τ=(3.3×10^5•RC+1.65R)/(R+3.3×10^5)

b. For maximum current in an RC circuit, the maximum current occur when the the exponential function is 1 I.e, at t=0

I = Ioe^(-t/RC)

So if t=0

I=Io

So, at this point all the current appears at the resistor

Using ohms law

V=IoR

Then, Io=V/R

Io=V/Req

Io=V ÷ 3.3×10^5R / (R +3.3×10^5)

Io= V(R +3.3×10^5) / (3.3×10^5R)

Io= (VR + 3.3×10^5V)/(3.3×10^5R)

This is the analysis using any initial resistor and capacitor.

Note : the C and R are the initial resistance and capacitance of the circuit before parallel connection.

Now, using the original question, check attachment for the question.....

Now, given that the initial resistor has a resistance of 8×10^5Ω

R=8×10^5Ω

Also a capacitor of capacitance 5µF

C=5×10^-6F

And the EMF= 12V.

So, to calculate the time constant of the given question

Since we already have the function in question a

a. Time constant

τ=(3.3×10^5•RC+1.65R)/(R+3.3×10^5)

Since, R=8×10^5Ω and C=5×10^-6F

Then,

τ=(3.3×10^5RC+1.65R)/ (R+3.3×10^5)

Where RC Is the time constant of the circuit without parallel connection

τ= RC = 8×10^5×5×10^-6= 4seconds

τ=(3.3×10^5×4+1.65×8×10^5) / (8×10^5+3.3×10^5)

τ=(13.2×10^5 + 13.2×10^5)/(11.3×10^5)

τ=(26.4×10^5) / (11.3×10^5)

τ= 2.34 seconds

b. Also, for the maximum current

Let use the function got in question b

Io= (VR + 3.3×10^5V)/(3.3×10^5R)

Io= (12×8×10^5+ 3.3×10^5V)/(3.3×10^5×8×10^5)

Io= (96×10^5+3.3×10^5V) / (26.4×10^10)

Io= (99.3×10^5) / (26.4×10^10)

Io=3.76×10^-5A

Which is

Io=0.376×10^-6A

Io=0.376µA

The maximum current is 0.376µA.

You can as well change the value of the initial R and C if you have other values.

You might be interested in
A mass of 0.5 kg hangs motionless from a vertical spring whose length is 1.10 m and whose unstretched length is 0.50 m. Next the
ser-zykov [4K]

Answer:

The maximum length during the motion is L_{max} = 1.45m

Explanation:

From the question we are told that

           The mass  is  m =0.5 kg

            The vertical spring  length is  L = 1.10m

            The unstretched  length is  L_{un} = 1.30m

          The initial speed is v_i = 1.3m/s

          The new length of the spring L_{new} =  1.30 m

The spring constant k is mathematically represented as

                           k = -\frac{F}{y}

Where F is the force applied  = m * g = 0.5 * 9.8=4.9N

           y is the difference in weight which is   =1.10-0.50=0.6m

The negative sign is because the displacement of the spring (i.e its extension occurs against the force F)

    Now  substituting values accordingly

                    k =  \frac{4.9}{0.6}

                       = 8.17 N/m

The  elastic potential energy is given as E_{PE} = \frac{1}{2} k D^2

  where D is this the is the displacement  

Since Energy is conserved the total elastic potential energy would be

             E_T = initial  \ elastic\ potential \ energy + kinetic \ energy

            E_T = \frac{1}{2} k D_{max}^2 =   \frac{1}{2} k D^2 + \frac{1}{2} mv^2

Substituting value accordingly

                \frac{1}{2} *8.17 *D_{max}^2 =\frac{1}{2} * 8.17*(1.30 - 0.50)^2 + \frac{1}{2} * 0.5 *1.30^2

                4.085 * D_{max}^2 = 3.69

                 D^2_{max} = 0.9033

                D_{max} = 0.950m

So to obtain total length we would add the unstretched length

 So we have

                  L_{max} = 0.950 + 0.5 = 1.45m

                               

               

               

                 

                     

5 0
3 years ago
Read 2 more answers
Which statement(s) correctly compare the masses of protons, neutrons, and electrons?
Ostrovityanka [42]
Electron<span>. the central part of an atom containing </span>protons<span> and </span>neutrons<span> ... which of the following is necessary to calculate the atomic </span>mass<span> of an element? ... which of the </span>statements correctly compares<span>the relative size of an ion to its neutral atom?</span>
3 0
3 years ago
Determine whether or not each of the following statement is true. If a statement is true, prove it. If the statement is false, p
Studentka2010 [4]

Answer:

True

Explanation:

This is a representation of Gauss law.

Gauss’s law does hold for moving charges, and in this respect Gauss’s law is more general than Coulomb’s law. In words, Gauss’s law states that: The net outward normal electric flux through any closed surface is proportional to the total electric charge enclosed within that closed surface. The law can be expressed mathematically using vector calculus in integral form and differential form, both are equivalent since they are related by the divergence theorem, also called Gauss’s theorem.

8 0
3 years ago
Which of the following could be classified as a problem that could be answered with a technological design?
loris [4]
I think the answer is 4) All of the above!! :)
4 0
3 years ago
A car slows down from 30 m/s to rest in a distance of 85 m. What was its acceleration?
ziro4ka [17]
120 acceleration oh yeah i am sure about this

4 0
3 years ago
Other questions:
  • What are the magnitude and direction of the acceleration of an electron at a point where the electric field has magnitude 7400 N
    13·1 answer
  • A space shuttle sits on the launch pad for 2.0 minutes, and then goes from rest to 4600 m/s in 8.0 minutes. Treat its motion as
    5·1 answer
  • A crane uses a block and tackle to lift a 2200N flagstone to a height of 25m
    15·1 answer
  • A block of ice with mass 2.00 kg slides 0.750 m down an inclined plane that slopes downward at an angle of 36.9 degrees below th
    12·1 answer
  • Why did corn borers increase after the fields were sprayed for beetles?
    8·2 answers
  • Static discharge differs from electric current because static discharge is described by which of the following?
    7·2 answers
  • At what ratio will potassium and sulfur form a binary ionic compound
    15·1 answer
  • Current is a measure of…
    6·1 answer
  • Look at the image of a salad with chicken on a counter top .in which direction is the thermal energy moving?
    15·1 answer
  • What I didn't even cross 1000 , how it can be possible...​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!