The answer is Rarefactions.
These are the parts of a wave that are further apart and the ones that are close together are called compressions.
I don’t think it is any of the choices stated above!
Answer:
v = 2.82 m/s
Explanation:
For this exercise we can use the conservation of energy relations.
We place our reference system at the point where block 1 of m₁ = 4 kg
starting point. With the spring compressed
Em₀ = K_e + U₂ = ½ k x² + m₂ g y₂
final point. When block 1 has descended y = - 0.400 m
Em_f = K₂ + U₂ + U₁ = ½ m₂ v² + m₂ g y₂ + m₁ g y
as there is no friction, the energy is conserved
Em₀ = Em_f
½ k x² + m₂ g y₂ = ½ m₂ v² + m₂ g y₂ + m₁ g y
½ k x² - m₁ g y = ½ m₂ v²
v² =
let's calculate
v² =
v² = 2.7 + 5.23
v = √7.927
v = 2,815 m / s
using of significant figures
v = 2.82 m/s
Answer:
gs = 0.6 m/s^2
Explanation:
Given data:
velocity = 12 m/s
height s = 12t -(1/2) g_s t^2
Given velocity is the derivatives of height



when velocity tend to 0 , maximum height is reached



at t = 20 sec ball reached the max height, so

A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore