Answer:
B) 16.67
Explanation:
If the dimension of one lumber is 2" × 6", the total area of one lumber will be 12inch²
If the total board feet of lumber there is 200in, therefore the total board of lumber that will be needed is 200/12 which gives 16.67 lumbers
Hallar el valor numerico de 24m2n3p
Answer:
Difference in height = 7.5 cm
Explanation:
We are given;.
Height of ethyl alcohol;h2 = 20 cm = 0.2 m
Density of glycerin: ρ1 = 1260 kg/m³
Density of ethyl alcohol; ρ2 = 790 kg/m³
To get the difference in height, the pressure at the top of the open end must be equal to the pressure at the point where the liquids do not mix since both points will be at different levels after the pouring.
Thus;
P1 = P2
Formula for pressure is; P = ρgh
Thus;
ρ1 × g × h1 = ρ2 × g × h2
g will cancel out to give;
ρ1 × h1 = ρ2× h2
Making h1 the subject, we have;
h1 = (ρ2× h2)/ρ1
h1 = (790 × 0.2)/1260
h1 = 0.125 m
Difference in height will be;
Δh = h2 - h1
Δh = 0.2 - 0.125
Δh = 0.075 m = 7.5 cm
The frequency of the pendulum is independent of the mass on the end. (c)
This means that it doesn't matter if you hang a piece of spaghetti or a school bus from the bottom end. If there is no air resistance, and no friction at the top end, and the string has no mass, then the time it takes the pendulum to swing from one side to the other <u><em>only</em></u> depends on the <u><em>length</em></u> of the string.
In order to balance the stick on the pivot, the total "moments" must be equal on both sides. A "moment" is (a weight) x (its distance from the center).
for the 5N weight: Moment = (5N) x (3 cm) = 15 N-cm
for the 12N weight: Moment = (12N) x (5 cm) = 60 N-cm
Sum of the moments trying to pull the stick down on that side = 75 N-cm
Whatever we hang on the other side has to provide a moment of 75 N-cm in the other direction. We have a 25N weight. Where should we hang it ?
(25N) x (distance from the pivot) = 75 N-cm
Distance from the pivot = (75 N-cm) / (25 N)
<em>Distance from the pivot = 3 cm </em>