A compound is a pure substance formed by the chemical combination of two or more different elements.
A compound may be splitted into simpler substances by chemical reactions, and has different properties to those of the elements that form it.
The composition of a compound is fixed: every piece of a compound has the same kind of atoms, bonded in the same way and proportion.
Some examples of compounds are H₂O, NaCl, H₂O₂, CH₃COOH. As you see, they have a chemical formula which states the kind and number of the atoms that form them.
They are different to mixtures, which are formed by two or more compounds, in a variable proportion, and can be separated by physical media. Some examples of mixtures are the solutions (e.g. NaCl dissolved in H₂O), and some solid mixtures (e.g. a mixture of marbles and sand).
Answer:
see explanation below
Explanation:
You are missing the reaction scheme, but in picture 1, I found a question very similar to this, and after look into some other pages, I found the same scheme reaction, so I'm gonna work on this one, to show you how to solve it. Hopefully it will be the one you are asking.
According to the reaction scheme, in the first step we have NaNH2/NH3(l). This reactant is used to substract the most acidic hydrogen in the alkine there. In this case, it will substract the hydrogen from the carbon in the triple bond leaving something like this:
R: cyclopentane
R - C ≡ C (-)
Now, in the second step, this new product will experiment a SN2 reaction, and will attack to the CH3 - I forming another alkine as follow:
R - C ≡ C - CH3
Finally in the last step, Na in NH3 are reactants to promvove the hydrogenation of alkines. In this case, it will undergo hydrogenation in the triple bond and will form an alkene:
R - CH = CH - CH3
In picture 2, you have the reaction and mechanism.
Answer:
it contains the electricity of the battery
Explanation:
Atomic mass is the answer
if u hav any more questions in chemistry ask me! I am very good at chemistry.
The element Sodium (Na) has 11 protons and 1 valence electron.